Generalized harmonic functions and Schwarz lemma for biharmonic mappings

被引:0
|
作者
Adel Khalfallah
Fathi Haggui
Mohamed Mhamdi
机构
[1] King Fahd University of Petroleum and Minerals,Department of Mathematics and Statistics
[2] Université de Monastir,Institut Préparatoire Aux Etudes d’Ingénieurs de Monastir (IPEIM)
[3] Université de Sousse,Ecole supérieure des Sciences et de la Technologie de Hammam Sousse (ESSTHS)
来源
Monatshefte für Mathematik | 2021年 / 196卷
关键词
Schwarz’s lemma; Boundary Schwarz’s lemma; Landau theorem; Biharmonic equations; -harmonic mappings; Primary 31A30; Secondary 31A05; 35J25;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we establish some Schwarz type lemmas for mappings Φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi $$\end{document} satisfying the inhomogeneous biharmonic Dirichlet problem Δ(Δ(Φ))=g\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \Delta (\Delta (\Phi )) = g$$\end{document} in D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb D}$$\end{document}, Φ=f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi =f$$\end{document} on T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb T}$$\end{document} and ∂nΦ=h\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial _n \Phi =h$$\end{document} on T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb T}$$\end{document}, where g is a continuous function on D¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{{\mathbb D}}$$\end{document}, f, h are continuous functions on T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb T}$$\end{document}, where D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb D}$$\end{document} is the unit disc of the complex plane C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb C}$$\end{document} and T=∂D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb T}=\partial {\mathbb D}$$\end{document} is the unit circle. To reach our aim, we start by investigating some properties of generalized harmonic functions called Tα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_\alpha $$\end{document}-harmonic functions. Finally, we prove a Landau-type theorem for this class of functions, when α>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha >0$$\end{document}.
引用
收藏
页码:823 / 849
页数:26
相关论文
共 50 条
  • [31] CERTAIN CLASS OF HARMONIC MAPPINGS RELATED TO STARLIKE FUNCTIONS
    Kahramaner, Yasemin
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2014, 4 (01): : 1 - 6
  • [32] Riesz conjugate functions theorem for harmonic quasiconformal mappings
    Liu, Jinsong
    Zhu, Jian-Feng
    ADVANCES IN MATHEMATICS, 2023, 434
  • [33] BOHR PHENOMENON FOR THE SPECIAL FAMILY OF ANALYTIC FUNCTIONS AND HARMONIC MAPPINGS
    Alkhaleefah, S. A.
    PROBLEMY ANALIZA-ISSUES OF ANALYSIS, 2020, 9 (03): : 3 - 13
  • [34] CONSTRUCTION AND DETERMINATION OF UNIVALENT BIHARMONIC MAPPINGS
    Long, Bo-Yong
    Wang, Qi-Han
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2022, 52 (02) : 627 - 643
  • [35] A Geometric Extension of Schwarz's Lemma and Applications
    Cleanthous, Galatia
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2016, 59 (01): : 30 - 35
  • [36] On the elliptic harmonic mappings and sense-preserving harmonic mappings
    Liu, Ming-Sheng
    Xu, Hao
    MONATSHEFTE FUR MATHEMATIK, 2024, 205 (03): : 631 - 647
  • [37] A Certain Class of Harmonic Mappings Related to Functions of Bounded Boundary Rotation
    Polatoglu, Yasar
    Duman, Emel Yavuz
    Aydogan, Melike
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2014, 16 (04) : 678 - 686
  • [38] HARMONIC MAPPINGS RELATED TO CLOSE-TO-CONVEX FUNCTIONS OF COMPLEX ORDER b
    Polatoglu, Yasar
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2014, 4 (01): : 27 - 32
  • [39] Versions of Schwarz's Lemma for Condenser Capacity and Inner Radius
    Betsakos, Dimitrios
    Pouliasis, Stamatis
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2013, 56 (02): : 241 - 250
  • [40] An Analog of the Schwarz Lemma for Locally Quasiconformal Automorphisms of the Unit Disk
    Graf, S. Yu.
    RUSSIAN MATHEMATICS, 2014, 58 (11) : 74 - 79