Generalized harmonic functions and Schwarz lemma for biharmonic mappings

被引:0
|
作者
Adel Khalfallah
Fathi Haggui
Mohamed Mhamdi
机构
[1] King Fahd University of Petroleum and Minerals,Department of Mathematics and Statistics
[2] Université de Monastir,Institut Préparatoire Aux Etudes d’Ingénieurs de Monastir (IPEIM)
[3] Université de Sousse,Ecole supérieure des Sciences et de la Technologie de Hammam Sousse (ESSTHS)
来源
Monatshefte für Mathematik | 2021年 / 196卷
关键词
Schwarz’s lemma; Boundary Schwarz’s lemma; Landau theorem; Biharmonic equations; -harmonic mappings; Primary 31A30; Secondary 31A05; 35J25;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we establish some Schwarz type lemmas for mappings Φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi $$\end{document} satisfying the inhomogeneous biharmonic Dirichlet problem Δ(Δ(Φ))=g\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \Delta (\Delta (\Phi )) = g$$\end{document} in D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb D}$$\end{document}, Φ=f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi =f$$\end{document} on T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb T}$$\end{document} and ∂nΦ=h\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial _n \Phi =h$$\end{document} on T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb T}$$\end{document}, where g is a continuous function on D¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{{\mathbb D}}$$\end{document}, f, h are continuous functions on T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb T}$$\end{document}, where D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb D}$$\end{document} is the unit disc of the complex plane C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb C}$$\end{document} and T=∂D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb T}=\partial {\mathbb D}$$\end{document} is the unit circle. To reach our aim, we start by investigating some properties of generalized harmonic functions called Tα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_\alpha $$\end{document}-harmonic functions. Finally, we prove a Landau-type theorem for this class of functions, when α>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha >0$$\end{document}.
引用
收藏
页码:823 / 849
页数:26
相关论文
共 50 条
  • [21] Schwarz-Type Lemma, Landau-Type Theorem, and Lipschitz-Type Space of Solutions to Inhomogeneous Biharmonic Equations
    Shaolin Chen
    Peijin Li
    Xiantao Wang
    The Journal of Geometric Analysis, 2019, 29 : 2469 - 2491
  • [22] Schwarz-Type Lemma, Landau-Type Theorem, and Lipschitz-Type Space of Solutions to Inhomogeneous Biharmonic Equations
    Chen, Shaolin
    Li, Peijin
    Wang, Xiantao
    JOURNAL OF GEOMETRIC ANALYSIS, 2019, 29 (03) : 2469 - 2491
  • [23] HARMONIC MAPPINGS RELATED TO THE CONVEX FUNCTIONS
    Yemisci, Arzu
    Polatoglu, Yasar
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2014, 4 (01): : 110 - 116
  • [24] A Schwarz-Pick inequality for harmonic quasiconformal mappings and its applications
    Chen, Xingdi
    Fang, Ainong
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 369 (01) : 22 - 28
  • [25] The Schwarz Type Inequality for Harmonic Mappings of the Unit Disc with Boundary Normalization
    Partyka, Dariusz
    Zajac, Jozef
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2015, 9 (01) : 213 - 228
  • [26] The Schwarz Type Inequality for Harmonic Mappings of the Unit Disc with Boundary Normalization
    Dariusz Partyka
    Józef Zaja̧c
    Complex Analysis and Operator Theory, 2015, 9 : 213 - 228
  • [27] Schwarz type Lemmas and a Landau type theorem of functions satisfying the biharmonic equation
    Chen, Shaolin
    Zhu, Jian-Feng
    BULLETIN DES SCIENCES MATHEMATIQUES, 2019, 154 : 36 - 63
  • [28] A note on Schwarz’s lemma
    Mashreghi J.
    Complex Analysis and its Synergies, 2021, 7 (2)
  • [29] Harmonic mappings related to Janowski starlike functions
    Kahramaner, Yasemin
    Polatoglu, Yasar
    Aydogan, Melike
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 270 : 564 - 570
  • [30] Generalized harmonic Koebe functions
    Ferrada-Salas, Alvaro
    Martin, Maria J.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 435 (01) : 860 - 873