Mesoscopic Linear Statistics of Wigner Matrices of Mixed Symmetry Class

被引:0
作者
Yukun He
机构
[1] University of Zürich,Institute of Mathematics
来源
Journal of Statistical Physics | 2019年 / 175卷
关键词
Random matrix; Wigner matrix; Linear statistics; CLT;
D O I
暂无
中图分类号
学科分类号
摘要
We prove a central limit theorem for the mesoscopic linear statistics of N×N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\times N$$\end{document} Wigner matrices H satisfying E|Hij|2=1/N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {E}}|H_{ij}|^2=1/N$$\end{document} and EHij2=σ/N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {E}} H_{ij}^2= \sigma /N$$\end{document}, where σ∈[-1,1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma \in [-1,1]$$\end{document}. We show that on all mesoscopic scales η\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta $$\end{document} (1/N≪η≪1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1/N \ll \eta \ll 1$$\end{document}), the linear statistics of H have a sharp transition at 1-σ∼η\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1-\sigma \sim \eta $$\end{document}. As an application, we identify the mesoscopic linear statistics of Dyson’s Brownian motion Ht\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_t$$\end{document} started from a real symmetric Wigner matrix H0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_0$$\end{document} at any nonnegative time t∈[0,∞]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t \in [0,\infty ]$$\end{document}. In particular, we obtain the transition from the central limit theorem for GOE to the one for GUE at time t∼η\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t \sim \eta $$\end{document}.
引用
收藏
页码:932 / 959
页数:27
相关论文
共 44 条
  • [21] Knowles A(undefined)Regularity conditions in the CLT for linear eigenvalue statistics of Wigner matrices undefined undefined undefined-undefined
  • [22] Yau H-T(undefined)undefined undefined undefined undefined-undefined
  • [23] Yin J(undefined)undefined undefined undefined undefined-undefined
  • [24] Erdős L(undefined)undefined undefined undefined undefined-undefined
  • [25] Yau H-T(undefined)undefined undefined undefined undefined-undefined
  • [26] Yin J(undefined)undefined undefined undefined undefined-undefined
  • [27] He Y(undefined)undefined undefined undefined undefined-undefined
  • [28] Knowles A(undefined)undefined undefined undefined undefined-undefined
  • [29] He Y(undefined)undefined undefined undefined undefined-undefined
  • [30] Knowles A(undefined)undefined undefined undefined undefined-undefined