Mesoscopic Linear Statistics of Wigner Matrices of Mixed Symmetry Class

被引:0
作者
Yukun He
机构
[1] University of Zürich,Institute of Mathematics
来源
Journal of Statistical Physics | 2019年 / 175卷
关键词
Random matrix; Wigner matrix; Linear statistics; CLT;
D O I
暂无
中图分类号
学科分类号
摘要
We prove a central limit theorem for the mesoscopic linear statistics of N×N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\times N$$\end{document} Wigner matrices H satisfying E|Hij|2=1/N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {E}}|H_{ij}|^2=1/N$$\end{document} and EHij2=σ/N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {E}} H_{ij}^2= \sigma /N$$\end{document}, where σ∈[-1,1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma \in [-1,1]$$\end{document}. We show that on all mesoscopic scales η\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta $$\end{document} (1/N≪η≪1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1/N \ll \eta \ll 1$$\end{document}), the linear statistics of H have a sharp transition at 1-σ∼η\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1-\sigma \sim \eta $$\end{document}. As an application, we identify the mesoscopic linear statistics of Dyson’s Brownian motion Ht\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_t$$\end{document} started from a real symmetric Wigner matrix H0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_0$$\end{document} at any nonnegative time t∈[0,∞]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t \in [0,\infty ]$$\end{document}. In particular, we obtain the transition from the central limit theorem for GOE to the one for GUE at time t∼η\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t \sim \eta $$\end{document}.
引用
收藏
页码:932 / 959
页数:27
相关论文
共 44 条
  • [1] Barbour AD(1986)Asymptotic expansions based on smooth functions in the central limit theorem Prob. Theor. Rel. Fields 72 289-303
  • [2] Bekerman F(2018)Mesoscopic central limit theorem for general Ann. Inst. H. Poincare Probab. Statist. 54 1917-1938
  • [3] Lodhia A(2016)-ensembles Commun. Pure Appl. Math. 69 1815-1881
  • [4] Bourgade P(2016)Fixed energy universality for generalized Wigner matrices Commun. Math. Phys. 342 491-531
  • [5] Erdős L(1995)Universality of mesoscopic fluctuations for orthogonal polynomial ensembles J. Lond. Math. Soc. 52 166-176
  • [6] Yau H-T(1999)The functional calculus Random Oper. Stoch. Equ. 7 1-22
  • [7] Yin J(1999)Asymptotic distribution of smoothed eigenvalue density. I. Gaussian random matrices Random Oper. Stoch. Equ. 7 149-168
  • [8] Breuer J(2018)Asymptotic distribution of smoothed eigenvalue density. II. Wigner random matrices Mem. Amer. Math. Soc. 255 1222-799
  • [9] Duits M(2014)On mesoscopic equilibrium for linear statistics in Dyson’s Brownian Motion Ann. H. Poincaré 16 709-1416
  • [10] Davies EB(2015)The Altshuler–Shklovskii formulas for random band matrices II: the general case Commun. Math. Phys. 333 1365-58