Coefficient bounds and differential subordinations for analytic functions associated with starlike functions

被引:0
作者
Ali Ebadian
Teodor Bulboacă
Nak Eun Cho
Ebrahim Analouei Adegani
机构
[1] Urmia University,Department of Mathematics, Faculty of Science
[2] Babeş-Bolyai University,Faculty of Mathematics and Computer Science
[3] Pukyong National University,Department of Applied Mathematics, College of Natural Sciences
来源
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas | 2020年 / 114卷
关键词
Coefficient estimates; Differential subordination; Starlike, convex, and univalent functions; Hankel determinant; Fekete–Szegő problem; Primary 30C45; Secondary 30C80;
D O I
暂无
中图分类号
学科分类号
摘要
The aim of the present paper is to study some coefficient problems for certain classes associated with starlike functions such as sharp bounds for initial coefficients, logarithmic coefficients, Hankel determinants and Fekete–Szegö problems. Moreover, we obtain some geometric properties as applications of differential subordinations.
引用
收藏
相关论文
共 54 条
  • [11] De Branges L(2013)Bounds for the second Hankel determinant of certain univalent functions J. Inequal. Appl. 281 1-17
  • [12] Cho NE(2015)On a subclass of strongly starlike functions associated with exponential function Bull. Malays. Math. Sci. Soc. 38 365-386
  • [13] Adegani EA(1983)On a conjecture for the logarithmic coefficients of univalent functions Zap. Nauch. Semin. Leningr. Otd. Mat. Inst. Steklova 125 135-143
  • [14] Bulut S(2018)Second Hankel determinant for a subclass of analytic bi-univalent functions defined by subordination Turkish J. Math. 42 2798-2808
  • [15] Motamednezhad A(2017)On some differential subordinations Studia Sci. Math. Hungar. 54 436-445
  • [16] Goel P(1966)On the coefficients and Hankel determinants of univalent functions J. Lond. Math. Soc. 1 111-122
  • [17] Sivaprasad Kumar S(1967)On the Hankel determinants of univalent functions Mathematika 14 108-112
  • [18] Kanas S(1981)Inverse coefficients for Ann. Univ. Mariae Curie-Skłodowska Sect. A. 35 125-143
  • [19] Adegani EA(2015)-convex functions C. R. Acad. Sci. Paris Ser. I 353 973-978
  • [20] Zireh A(1936)Some properties related to a certain class of starlike functions Bull. Am. Math. Soc. 42 366-370