Molecular bandgap engineering of bottom-up synthesized graphene nanoribbon heterojunctions

被引:4
|
作者
Chen, Yen-Chia [1 ,2 ]
Cao, Ting [1 ,2 ]
Chen, Chen [3 ]
Pedramrazi, Zahra [1 ]
Haberer, Danny [1 ]
de Oteyza, Dimas G. [1 ,4 ]
Fischer, Felix R. [2 ,3 ,5 ,6 ]
Louie, Steven G. [1 ,2 ]
Crommie, Michael F. [1 ,2 ,5 ,6 ]
机构
[1] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
[4] Univ Basque Country, Ctr Phys Mat, CSIC, Ctr Fis Mat, E-20018 San Sebastian, Spain
[5] Univ Calif Berkeley, Kavli Energy NanoSci Inst, Berkeley, CA 94720 USA
[6] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
STATE; GAP;
D O I
10.1038/NNANO.2014.307
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Bandgap engineering is used to create semiconductor hetero-structure devices that perform processes such as resonant tunnelling(1,2) and solar energy conversion(3,4). However, the performance of such devices degrades as their size is reduced(5,6). Graphene-based molecular electronics has emerged as a candidate to enable high performance down to the single-molecule scale(7-17). Graphene nanoribbons, for example, can have widths of less than 2 nm and bandgaps that are tunable via their width and symmetry(6,18,19). It has been predicted that bandgap engineering within a single graphene nanoribbon may be achieved by varying the width of covalently bonded segments within the nanoribbon(20-22). Here, we demonstrate the bottom-up synthesis of such width-modulated armchair graphene nanoribbon heterostructures, obtained by fusing segments made from two different molecular building blocks. We study these heterojunctions at subnanometre length scales with scanning tunnelling microscopy and spectroscopy, and identify their spatially modulated electronic structure, demonstrating molecular-scale bandgap engineering, including type I heterojunction behaviour. First-principles calculations support these findings and provide insight into the microscopic electronic structure of bandgap-engineered graphene nanoribbon heterojunctions.
引用
收藏
页码:156 / 160
页数:5
相关论文
共 50 条
  • [1] Bottom-Up Synthesized Graphene Nanoribbon Transistors
    Mutlu, Zafer
    Bokor, Jeffrey
    6TH IEEE ELECTRON DEVICES TECHNOLOGY AND MANUFACTURING CONFERENCE (EDTM 2022), 2022, : 157 - 159
  • [2] Scaling and statistics of bottom-up synthesized armchair graphene nanoribbon transistors
    Lin, Yuxuan Cosmi
    Mutlu, Zafer
    Barin, Gabriela Borin
    Hong, Yejin
    Llinas, Juan Pablo
    Narita, Akimitsu
    Singh, Hanuman
    Muellen, Klaus
    Ruffieux, Pascal
    Fasel, Roman
    Bokor, Jeffrey
    CARBON, 2023, 205 : 519 - 526
  • [3] Building graphene heterojunctions from the bottom-up
    Sealy, Cordelia
    NANO TODAY, 2015, 10 (02) : 120 - 121
  • [4] Photothermal Bottom-up Graphene Nanoribbon Growth Kinetics
    Falke, Yannic
    Senkovskiy, Boris, V
    Ehlen, Niels
    Wysocki, Lena
    Marangoni, Tomas
    Durr, Rebecca A.
    Chernov, Alexander, I
    Fischer, Felix R.
    Grueneis, Alexander
    NANO LETTERS, 2020, 20 (07) : 4761 - 4767
  • [5] Bottom-Up Synthesized Nanoporous Graphene Transistors
    Mutlu, Zafer
    Jacobse, Peter H.
    McCurdy, Ryan D.
    Llinas, Juan P.
    Lin, Yuxuan
    Veber, Gregory C.
    Fischer, Felix R.
    Crommie, Michael F.
    Bokor, Jeffrey
    ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (47)
  • [6] Bottom-up graphene nanoribbon field-effect transistors
    Bennett, Patrick B.
    Pedramrazi, Zahra
    Madani, Ali
    Chen, Yen-Chia
    de Oteyza, Dimas G.
    Chen, Chen
    Fischer, Felix R.
    Crommie, Michael F.
    Bokor, Jeffrey
    APPLIED PHYSICS LETTERS, 2013, 103 (25)
  • [7] BOTTOM-UP GRAPHENE
    不详
    CHEMICAL & ENGINEERING NEWS, 2009, 87 (28) : 26 - 26
  • [8] Bottom-Up Graphene-Nanoribbon Fabrication Reveals Chiral Edges and Enantioselectivity
    Han, Patrick
    Akagi, Kazuto
    Canova, Filippo Federici
    Mutoh, Hirotaka
    Shiraki, Susumu
    Iwaya, Katsuya
    Weiss, Paul S.
    Asao, Naoki
    Hitosugi, Taro
    ACS NANO, 2014, 8 (09) : 9181 - 9187
  • [9] Circuit Topology for Bottom-Up Engineering of Molecular Knots
    Golovnev, Anatoly
    Mashaghi, Alireza
    SYMMETRY-BASEL, 2021, 13 (12):
  • [10] Iodine versus Bromine Functionalization for Bottom-Up Graphene Nanoribbon Growth: Role of Diffusion
    Bronner, Christopher
    Marangoni, Tomas
    Rizzo, Daniel J.
    Durr, Rebecca A.
    Jorgensen, Jakob Holm
    Fischer, Felix R.
    Crommie, Michael F.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2017, 121 (34): : 18490 - 18495