Partition and Disjoint Cycles in Digraphs

被引:0
|
作者
Chunjiao Song
Jin Yan
机构
[1] Shandong University,School of Mathematics
来源
Graphs and Combinatorics | 2023年 / 39卷
关键词
Minimum out-degree; Partition; Vertex disjoint cycles; Probability method; 05C20; 05C38;
D O I
暂无
中图分类号
学科分类号
摘要
Let D be a digraph, we use δ+(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta ^+(D)$$\end{document} to denote the minimum out-degree of D. In 2006, Alon proposed a problem stating that if there exists an integer function F(d1,…,dk)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F(d_1, \ldots ,d_k)$$\end{document} for a digraph D such that if δ+(D)≥F(d1,…,dk)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta ^{+}(D) \ge F(d_1, \ldots ,d_k)$$\end{document}, then V(D) can be partitioned into k parts V1,…,Vk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_1,\ldots ,V_k$$\end{document} with δ+(D[Vi])≥di\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta ^{+}(D[V_i]) \ge d_i$$\end{document} for each i∈[k]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i \in [k]$$\end{document}, here D[Vi]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D[V_i]$$\end{document} denotes the induced subdigraph of Vi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_i$$\end{document}. We prove that F(d1,…,dk)≤2(d1+⋯+dk)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F(d_1, \ldots ,d_k) \le 2(d_1+\cdots +d_k)$$\end{document} under the condition that the maximum in-degree is bounded and lnk2<min{d1,⋯,dk}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{\ln k}{2} < \min \{d_1, \dots , d_k\}$$\end{document} by using Lovász Local Lemma. Furthermore, we show that some regular digraphs, and digraphs of small order can be partitioned into k parts such that both the minimum in-degree and the minimum out-degree of the digraph induced by each part are at least di\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_i$$\end{document} for each i∈[k]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i \in [k]$$\end{document}. Based on the results above, we further give lower bounds of the minimum out-degree of some special class digraphs containing k vertex disjoint cycles of different lengths.
引用
收藏
相关论文
共 50 条
  • [21] Vertex-disjoint cycles in regular tournaments
    Lichiardopol, Nicolas
    DISCRETE MATHEMATICS, 2012, 312 (12-13) : 1927 - 1930
  • [22] Graphs with many Vertex-Disjoint Cycles
    Rautenbach, Dieter
    Regen, Friedrich
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2012, 14 (02) : 75 - 82
  • [23] Packing disjoint cycles over vertex cuts
    Harant, Jochen
    Rautenbach, Dieter
    Recht, Peter
    Schiermeyer, Ingo
    Sprengel, Eva-Maria
    DISCRETE MATHEMATICS, 2010, 310 (13-14) : 1974 - 1978
  • [24] Independence number and vertex-disjoint cycles
    Egawa, Yoshimi
    Enomoto, Hikoe
    Jendrol, Stanislav
    Ota, Katsuhiro
    Schiermeyer, Ingo
    DISCRETE MATHEMATICS, 2007, 307 (11-12) : 1493 - 1498
  • [25] Vertex-disjoint cycles in local tournaments
    Li, Ruijuan
    Liang, Juanjuan
    Zhang, Xinhong
    Guo, Yubao
    DISCRETE MATHEMATICS, 2020, 343 (12)
  • [26] Neighborhood Unions for the Existence of Disjoint Chorded Cycles in Graphs
    Gao, Yunshu
    Li, Guojun
    Yan, Jin
    GRAPHS AND COMBINATORICS, 2013, 29 (05) : 1337 - 1345
  • [27] k disjoint cycles containing specified independent vertices
    Dong, Jiuying
    DISCRETE MATHEMATICS, 2008, 308 (22) : 5269 - 5273
  • [28] Neighborhood Unions for the Existence of Disjoint Chorded Cycles in Graphs
    Yunshu Gao
    Guojun Li
    Jin Yan
    Graphs and Combinatorics, 2013, 29 : 1337 - 1345
  • [29] Vertex-disjoint cycles containing specified edges
    Egawa, Y
    Faudree, RJ
    Györi, E
    Ishigami, Y
    Schelp, RH
    Wang, H
    GRAPHS AND COMBINATORICS, 2000, 16 (01) : 81 - 92
  • [30] Vertex-disjoint cycles of the same length in tournaments
    Wang, Zhilan
    Qi, Yuzhen
    Yan, Jin
    JOURNAL OF GRAPH THEORY, 2023, 102 (04) : 666 - 683