Spectral Discretizations of the Stokes Equations with Non Standard Boundary Conditions

被引:0
作者
J. M. Bernard
机构
[1] IUT d'Evry Val d'Essonne,
来源
Journal of Scientific Computing | 2004年 / 20卷
关键词
spectral methods; Stokes equations; boundary conditions;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is devoted to the approximation of a non standard Stokes problem by spectral methods: in addition to the pressure assigned on a part of the boundary, the tangential vorticity is given on another part of the boundary. Several spectral discretizations are proposed and analysed. The inf-sup conditions, associated with the discretizations of this problem and with the spurious modes that follow from them, are thoroughly studied.
引用
收藏
页码:355 / 377
页数:22
相关论文
共 17 条
  • [1] Bègue C.(1987)A nouveau sur les équations de Stokes et de Navier–Stokes avec des conditions aux limites sur la pression C. R. Acad. Sci. Série I 304 23-28
  • [2] Conca C.(2002)Non standard Stokes and Navier–Stokes problems: Existence and regularity in stationary case Math. Meth. in Appl. Sciences 25 627-661
  • [3] Murat F.(1991)Spectral approximations of the Stokes equations with boundary conditions on the pressure SIAM J. Numer. Anal. 28 333-362
  • [4] Pironneau O.(1990)Single-grid spectral collocation for the Navier–Stokes equations IMA J. Numer. Anal. 10 253-297
  • [5] Bernard J. M.(1995)Navier–Stokes equations with imposed pressure and velocity fluxes Internat. J. Numer. Methods Fluids 20 267-287
  • [6] Bernardi C.(1991)Résultats d'approximation optimaux pour les opérateurs d'interpolation polynomiale C. R. Acad. Sci. Série I 312 705-710
  • [7] Canuto C.(undefined)undefined undefined undefined undefined-undefined
  • [8] Maday Y.(undefined)undefined undefined undefined undefined-undefined
  • [9] Bernardi C.(undefined)undefined undefined undefined undefined-undefined
  • [10] Canuto C.(undefined)undefined undefined undefined undefined-undefined