On the solution of nonlinear operator equations and the invariant subspace

被引:0
作者
Hua Wang
Jingsong Wu
Junjie Huang
机构
[1] Inner Mongolia University of Technology,College of Sciences
[2] Inner Mongolia University,School of Mathematical Sciences
来源
Advances in Operator Theory | 2023年 / 8卷
关键词
Operator equation; Solution; Invariant subspace; 47A62; 47A15;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study nonzero solutions of the operator equation X2AX+XAX=BX\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X^2AX+XAX=BX$$\end{document}, where A, B are given bounded linear operators on Hilbert spaces. Based on the invariant subspace of B, some necessary conditions and sufficient conditions are established for the existence of nonzero solutions of the equation. Moreover, we consider the infinitely many solutions and group invertible solutions. Finally, we give the connection between the nontrivial reducing subspace of B and the nonzero singular commuting solution of the equation.
引用
收藏
相关论文
共 28 条
  • [1] Adamjan V(2001)Existence and uniqueness of contractive solutions of some Riccati equations J. Funct. Anal. 179 448-473
  • [2] Langer H(1992)Counterexample to a question on the operator equation Linear Algebra Appl. 177 157-162
  • [3] Tretter C(2023)Solvability and different solutions of the operator equation Ann. Funct. Anal. 14 5-152
  • [4] Bach E(2023)Pedersen–Takesaki operator equation and operator equation J. Math. Anal. Appl. 521 149-116
  • [5] Furuta T(1988) in Hilbert Linear Algebra Appl. 109 113-1010
  • [6] Cvetković-Ilić DS(1999)-modules Linear Algebra Appl. 295 1001-166
  • [7] Eskandari R (1984)The operator equation Int. J. Syst. Sci. 15 161-312
  • [8] Fang XC(2008)On the operator equation Monatsh. Math. 155 311-638
  • [9] Moslehian MS(1972)Solution of the higher-order Riccati-type matrix equations Proc. Am. Math. Soc. 36 629-2207
  • [10] Xu QX(1974)On the Riccati equations J. Math. Anal. Appl. 45 2198-875