A goodness-of-fit test for marginal distribution of linear random fields with long memory

被引:0
作者
Hira L. Koul
Nao Mimoto
Donatas Surgailis
机构
[1] Michigan State University,
[2] University of Akron,undefined
[3] Vilnius University,undefined
来源
Metrika | 2016年 / 79卷
关键词
Degenerate residual empirical process; Cauchy distribution; Primary 62G07; Secondary 62M10;
D O I
暂无
中图分类号
学科分类号
摘要
This paper addresses the problem of fitting a known distribution function to the marginal distribution of a stationary long memory moving average random field observed on increasing ν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu $$\end{document}-dimensional “cubic” domains when its mean μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} and scale σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document} are known or unknown. Using two suitable estimators of μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} and a classical estimate of σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document}, a modification of the Kolmogorov–Smirnov statistic is defined based on the residual empirical process and having a Cauchy-type limit distribution, independent of μ,σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu ,\sigma $$\end{document} and the long memory parameter d. Based on this result, a simple goodness-of-fit test for the marginal distribution is constructed, which does not require the estimation of d or any other underlying nuisance parameters. The result is new even for the case of time series, i.e., when ν=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu =1$$\end{document}. Findings of a simulation study investigating the finite sample behavior of size and power of the proposed test is also included in this paper.
引用
收藏
页码:165 / 193
页数:28
相关论文
共 43 条
[1]  
Abadir K(2009)Two estimators of the long-run variance: beyond short memory J Econom 150 56-70
[2]  
Distaso W(2005)Parameter estimates for fractional autoregressive spatial processes Ann Stat 33 2533-2567
[3]  
Giraitis L(1985)Ferromagnetism and spatial long range order in binary alloys: systems with face-centered cubic structure J Phys C Solid State Phys 18 1217-1224
[4]  
Boissy Y(2002)Asymptotics of weighted empirical processes of linear random fields with long range dependence Ann. d’Inst. de H. Poincaré 38 879-896
[5]  
Bhattacharyya BB(1973)Weak convergence of the sample distribution function when parameters are estimated Ann Stat 1 279-290
[6]  
Li X(2008)Semiparametric estimation of spatial long-range dependence J Stat Plan Inference 138 1479-1495
[7]  
Richardson GD(1996)Asymptotic normality of regression estimators with long memory errors Stat Probab Lett 29 317-335
[8]  
Carlos-Davila E(2000)Power-law correlations, related models for long range dependence, and their simulation J Appl Probab 37 1104-1109
[9]  
Mejia-Lira F(1980)Long memory relationship and the aggregation of dynamic models J Econom 14 227-238
[10]  
Moran-Lopez JL(2009)Local Whittle estimator for anisotropic random fields J Multivar Anal 100 993-1028