MDS Constacyclic Codes of Prime Power Lengths Over Finite Fields and Construction of Quantum MDS Codes

被引:0
作者
Hai Q. Dinh
Ramy Taki ElDin
Bac T. Nguyen
Roengchai Tansuchat
机构
[1] Ton Duc Thang University,Division of Computational Mathematics and Engineering, Institute for Computational Science
[2] Ton Duc Thang University,Faculty of Mathematics and Statistics
[3] Ain Shams University,Faculty of Engineering
[4] Thai Nguyen University of Economics and Business Administration,Department of Basic Sciences
[5] Chiang Mai University,Centre of Excellence in Econometrics, Faculty of Economics
来源
International Journal of Theoretical Physics | 2020年 / 59卷
关键词
Constacyclic codes; Hamming distance; MDS codes; Quantum MDS codes;
D O I
暂无
中图分类号
学科分类号
摘要
If we fix the code length n and dimension k, maximum distance separable (briefly, MDS) codes form an important class of codes because the class of MDS codes has the greatest error-correcting and detecting capabilities. In this paper, we establish all MDS constacyclic codes of length ps over Fpm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {F}_{p^{m}}$\end{document}. We also give some examples of MDS constacyclic codes over finite fields. As an application, we construct all quantum MDS codes from repeated-root codes of prime power lengths over finite fields using the CSS and Hermitian constructions. We provide all quantum MDS codes constructed from dual codes of repeated-root codes of prime power lengths over finite fields using the Hermitian construction. They are new in the sense that their parameters are different from all the previous constructions. Moreover, some of them have larger Hamming distances than the well known quantum error-correcting codes in the literature.
引用
收藏
页码:3043 / 3078
页数:35
相关论文
共 110 条
[1]  
Ashikhmin A(2001)Nonbinary quantum stablizer codes IEEE Trans. Inf. Theory. 47 3065-3072
[2]  
Knill E(1996)Mixed state entanglement and quantum error correction Phys. Rev. A. 54 3824-23
[3]  
Bennett CH(1967)Semisimple cyclic and Abelian codes. II Kibernetika (Kiev) 3 17-434
[4]  
DiVincenzo DP(1952)Orthogonal arrays of index unity Ann. Math. Statistics 23 426-1106
[5]  
Smolin JA(1996)Good quantum error-correcting codes exist Phys. Rev. A 54 1098-1387
[6]  
Wooters WK(1998)Quantum error correction via codes over GF(4) IEEE Trans. Inform. Theory 44 1369-262
[7]  
Berman SD(2018)Constacyclic codes of length nps over $\mathbb {F}_{p^{m}}+u\mathbb {F}_{p^{m}}$Fpm + uFpm Adv. Math. Commun. 12 231-2091
[8]  
Bush KA(2019)An explicit representation and enumeration for self-dual cyclic codes over $\mathbb {F}_{2^{m}}+u\mathbb {F}_{2^{m}}$F2m + uF2m of length 2s Discrete Math. 342 2077-15
[9]  
Calderbank AR(2020)A class of linear codes of length 2 over fnite chain rings J Algebra Appl 19 1-55562
[10]  
Shor PW(2020)On matrix-product structure of repeatedroot constacyclic codes over fnite felds Discrete Math. 343 111768-1478