Existence and properties of meromorphic solutions of some q-difference equations

被引:0
|
作者
Na Xu
Chun-Ping Zhong
机构
[1] Xiamen University,School of Mathematical Sciences
关键词
-difference equation; meromorphic solution; growth; 30D35; 39A05;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we investigate the existence and growth of solutions of the q-difference equation ∏i=1nf(qiz)=R(z,f(z))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\prod_{i=1}^{n}f(q_{i}z)=R(z,f(z))$\end{document}, where R(z,f(z))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$R(z,f(z))$\end{document} is an irreducible rational function in f(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f(z)$\end{document}. We also give an estimation of the growth of transcendental meromorphic solutions of the equation ∏i=1nf(qiz)=f(z)m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\prod_{i=1}^{n}f(q_{i}z)=f(z)^{m}$\end{document}.
引用
收藏
相关论文
共 50 条
  • [21] Existence of zero-order meromorphic solutions of certain q-difference equations
    Yunfei Du
    Zongsheng Gao
    Jilong Zhang
    Ming Zhao
    Journal of Inequalities and Applications, 2018
  • [22] On the Growth Order of Meromorphic Solutions of Some Ultrametric q-Difference Equations
    Boughaba, Houda
    Zerzaihi, Tahar
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2023, 44 (04) : 1280 - 1288
  • [23] Meromorphic solutions of some non-linear q-difference equations
    Dyavanal, Renukadevi S.
    Muttagi, Jyoti B.
    Shilpa, N.
    TBILISI MATHEMATICAL JOURNAL, 2020, 13 (03) : 53 - 62
  • [24] On existence of meromorphic solutions for certain q-difference equation
    Peng, Changwen
    Chen, Zongxuan
    Huang, Huawei
    Tao, Lei
    SCIENCEASIA, 2023, 49 (01): : 49 - 55
  • [25] EXISTENCE OF ZERO-ORDER MEROMORPHIC SOLUTIONS IN DETECTING q-DIFFERENCE PAINLEVE EQUATIONS
    Korhonen, Risto
    Wen, Zhi-Tao
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 368 (07) : 4993 - 5008
  • [26] Existence of solutions for fractional q-difference equations
    Ulke, Oykum
    Topal, Fatma Serap
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2023, 68 (03): : 573 - 591
  • [27] MEROMORPHIC SOLUTIONS TO COMPLEX DIFFERENCE AND q-DIFFERENCE EQUATIONS OF MALMQUIST TYPE
    Zhang, Jie
    Zhang, Jianjun
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2014,
  • [28] On Properties of Meromorphic Solutions for Certain q-Difference Equation
    Lei TAO
    Jianren LONG
    Journal of Mathematical Research with Applications, 2023, 43 (01) : 83 - 90
  • [29] Some Properties of Solutions for Some Types of Q-Difference Equations Originated from Q-Difference Painlevé Equation
    Hongyan XU
    Xiumin ZHENG
    JournalofMathematicalResearchwithApplications, 2020, 40 (05) : 507 - 518
  • [30] Some properties of meromorphic function and its q-difference
    Wang, Hua
    Xu, Hong-Yan
    Zheng, Xiu-Min
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2015, 18 (01) : 71 - 81