Existence and properties of meromorphic solutions of some q-difference equations

被引:0
|
作者
Na Xu
Chun-Ping Zhong
机构
[1] Xiamen University,School of Mathematical Sciences
关键词
-difference equation; meromorphic solution; growth; 30D35; 39A05;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we investigate the existence and growth of solutions of the q-difference equation ∏i=1nf(qiz)=R(z,f(z))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\prod_{i=1}^{n}f(q_{i}z)=R(z,f(z))$\end{document}, where R(z,f(z))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$R(z,f(z))$\end{document} is an irreducible rational function in f(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f(z)$\end{document}. We also give an estimation of the growth of transcendental meromorphic solutions of the equation ∏i=1nf(qiz)=f(z)m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\prod_{i=1}^{n}f(q_{i}z)=f(z)^{m}$\end{document}.
引用
收藏
相关论文
共 50 条
  • [1] Existence and properties of meromorphic solutions of some q-difference equations
    Xu, Na
    Zhong, Chun-Ping
    ADVANCES IN DIFFERENCE EQUATIONS, 2015,
  • [2] SOME PROPERTIES OF MEROMORPHIC SOLUTIONS FOR q-DIFFERENCE EQUATIONS
    Xu, Hong Yan
    Liu, San Yang
    Zheng, Xiu Min
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2017,
  • [3] Some properties of meromorphic solutions of q-difference equations
    Zheng, Xiu-Min
    Chen, Zong-Xuan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 361 (02) : 472 - 480
  • [4] Existence and growth of meromorphic solutions of some nonlinear q-difference equations
    Zheng, Xiu-Min
    Tu, Jin
    ADVANCES IN DIFFERENCE EQUATIONS, 2013,
  • [5] Existence and growth of meromorphic solutions of some nonlinear q-difference equations
    Xiu-Min Zheng
    Jin Tu
    Advances in Difference Equations, 2013
  • [6] MEROMORPHIC SOLUTIONS OF SOME q-DIFFERENCE EQUATIONS
    Chen, BaoQin
    Chen, ZongXuan
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2011, 48 (06) : 1303 - 1314
  • [7] PROPERTIES OF MEROMORPHIC SOLUTIONS OF q-DIFFERENCE EQUATIONS
    Qi, Xiaoguang
    Yang, Lianzhong
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2015,
  • [8] Growth of Meromorphic Solutions of Some q-Difference Equations
    Zhang, Guowei
    ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [9] SOME RESULTS ON MEROMORPHIC SOLUTIONS OF Q-DIFFERENCE DIFFERENTIAL EQUATIONS
    Gao, Lingyun
    Gao, Zhenguang
    Liu, Manli
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2023, 60 (03) : 593 - 610
  • [10] Value Distribution of Meromorphic Solutions of Some q-Difference Equations
    Xiu Min ZHENG Zong Xuan CHEN Institute of Mathematics and Information ScienceJiangxi Normal UniversityJiangxi PRChinaSchool of Mathematical SciencesSouth China Normal UniversityGuangdong PRChina
    数学研究与评论, 2011, 31 (04) : 698 - 704