Intersection pairings on singular moduli spaces of bundles over a Riemann surface and their partial desingularisations

被引:0
作者
Lisa Jeffrey
Young-Hoon Kiem
Frances C. Kirwan
Jonathan Woolf
机构
[1] Department of Mathematics,
[2] University of Toronto,undefined
[3] Department of Mathematics,undefined
[4] Seoul National University,undefined
[5] Mathematical Institute,undefined
[6] Oxford University,undefined
[7] Department of Mathematical Sciences,undefined
[8] University of Liverpool,undefined
来源
Transformation Groups | 2006年 / 11卷
关键词
Modulus Space; Vector Bundle; Intersection Pairing; Normal Bundle; Maximal Torus;
D O I
暂无
中图分类号
学科分类号
摘要
This paper studies intersection theory on the compactified moduli space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mbox{$\cal M$}} (n,d)$\end{document} of holomorphic bundles of rank n and degree d over a fixed compact Riemann surface \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Sigma$\end{document} of genus \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$g \geq 2$\end{document} where n and d may have common factors. Because of the presence of singularities we work with the intersection cohomology groups \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$I\!H^*({\mbox{$\cal M$}} (n,d))$\end{document} defined by Goresky and MacPherson and the ordinary cohomology groups of a certain partial resolution of singularities \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\widetilde{{\mbox{$\cal M$}}} (n,d)$\end{document} of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mbox{$\cal M$}} (n,d).$\end{document} Based on our earlier work [25], we give a precise formula for the intersection cohomology pairings and provide a method to calculate pairings on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\widetilde{{\mbox{$\cal M$}}}(n,d).$\end{document} The case when n = 2 is discussed in detail. Finally Witten's integral is considered for this singular case.
引用
收藏
页码:439 / 494
页数:55
相关论文
empty
未找到相关数据