A stochastic primal-dual method for a class of nonconvex constrained optimization

被引:0
作者
Lingzi Jin
Xiao Wang
机构
[1] University of Chinese Academy of Sciences,School of Mathematical Sciences
[2] Peng Cheng Laboratory,undefined
来源
Computational Optimization and Applications | 2022年 / 83卷
关键词
Nonconvex optimization; Augmented Lagrangian function; Stochastic gradient; -stationary point; Complexity; 90C30; 90C06; 65K05; 92C15;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we study a class of nonconvex optimization which involves uncertainty in the objective and a large number of nonconvex functional constraints. Challenges often arise when solving this type of problems due to the nonconvexity of the feasible set and the high cost of calculating function value and gradient of all constraints simultaneously. To handle these issues, we propose a stochastic primal-dual method in this paper. At each iteration, a proximal subproblem based on a stochastic approximation to an augmented Lagrangian function is solved to update the primal variable, which is then used to update dual variables. We explore theoretical properties of the proposed algorithm and establish its iteration and sample complexities to find an ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon$$\end{document}-stationary point of the original problem. Numerical tests on a weighted maximin dispersion problem and a nonconvex quadratically constrained optimization problem demonstrate the promising performance of the proposed algorithm.
引用
收藏
页码:143 / 180
页数:37
相关论文
共 50 条
[41]   Duality gaps in nonconvex stochastic optimization [J].
Dentcheva, D ;
Römisch, W .
MATHEMATICAL PROGRAMMING, 2004, 101 (03) :515-535
[42]   Distributed stochastic nonsmooth nonconvex optimization [J].
Kungurtsev, Vyacheslav .
OPERATIONS RESEARCH LETTERS, 2022, 50 (06) :627-631
[43]   An intelligent method of swarm neural networks for equalities-constrained nonconvex optimization [J].
Che, Hangjun ;
Li, Chuandong ;
He, Xing ;
Huang, Tingwen .
NEUROCOMPUTING, 2015, 167 :569-577
[44]   Rate-improved Inexact Augmented Lagrangian Method for Constrained Nonconvex Optimization [J].
Li, Zichong ;
Chen, Pin-Yu ;
Liu, Sijia ;
Lu, Songtao ;
Xu, Yangyang .
24TH INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS (AISTATS), 2021, 130
[45]   On inexact stochastic splitting methods for a class of nonconvex composite optimization problems with relative error [J].
Hu, Jia ;
Han, Congying ;
Guo, Tiande ;
Zhao, Tong .
OPTIMIZATION METHODS & SOFTWARE, 2023, 38 (01) :1-33
[46]   Proximal point method for a special class of nonconvex multiobjective optimization functions [J].
Bento, G. C. ;
Ferreira, O. P. ;
Sousa Junior, V. L. .
OPTIMIZATION LETTERS, 2018, 12 (02) :311-320
[47]   STRONG DUALITY IN CONE CONSTRAINED NONCONVEX OPTIMIZATION [J].
Flores-Bazan, Fabian ;
Mastroeni, Giandomenico .
SIAM JOURNAL ON OPTIMIZATION, 2013, 23 (01) :153-169
[48]   Proximal point method for a special class of nonconvex multiobjective optimization functions [J].
G. C. Bento ;
O. P. Ferreira ;
V. L. Sousa Junior .
Optimization Letters, 2018, 12 :311-320
[49]   Generalized robust duality in constrained nonconvex optimization [J].
Wang, Jie ;
Li, Sheng-Jie ;
Chen, Chun-Rong .
OPTIMIZATION, 2021, 70 (03) :591-612
[50]   Nonconvex constrained optimization by a filtering branch and bound [J].
Eichfelder, Gabriele ;
Klamroth, Kathrin ;
Niebling, Julia .
JOURNAL OF GLOBAL OPTIMIZATION, 2021, 80 (01) :31-61