A stochastic primal-dual method for a class of nonconvex constrained optimization

被引:0
作者
Lingzi Jin
Xiao Wang
机构
[1] University of Chinese Academy of Sciences,School of Mathematical Sciences
[2] Peng Cheng Laboratory,undefined
来源
Computational Optimization and Applications | 2022年 / 83卷
关键词
Nonconvex optimization; Augmented Lagrangian function; Stochastic gradient; -stationary point; Complexity; 90C30; 90C06; 65K05; 92C15;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we study a class of nonconvex optimization which involves uncertainty in the objective and a large number of nonconvex functional constraints. Challenges often arise when solving this type of problems due to the nonconvexity of the feasible set and the high cost of calculating function value and gradient of all constraints simultaneously. To handle these issues, we propose a stochastic primal-dual method in this paper. At each iteration, a proximal subproblem based on a stochastic approximation to an augmented Lagrangian function is solved to update the primal variable, which is then used to update dual variables. We explore theoretical properties of the proposed algorithm and establish its iteration and sample complexities to find an ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon$$\end{document}-stationary point of the original problem. Numerical tests on a weighted maximin dispersion problem and a nonconvex quadratically constrained optimization problem demonstrate the promising performance of the proposed algorithm.
引用
收藏
页码:143 / 180
页数:37
相关论文
共 50 条
  • [21] PRIMAL-DUAL INTERIOR POINT METHOD BASED ON A NEW BARRIER FUNCTION
    Cho, Gyeong-Mi
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2011, 12 (03) : 611 - 624
  • [22] A Class of Large-Update and Small-Update Primal-Dual Interior-Point Algorithms for Linear Optimization
    Y. Q. Bai
    G. Lesaja
    C. Roos
    G. Q. Wang
    M. El Ghami
    Journal of Optimization Theory and Applications, 2008, 138 : 341 - 359
  • [23] A Primal-Dual Smoothing Framework for Max-Structured Non-Convex Optimization
    Zhao, Renbo
    MATHEMATICS OF OPERATIONS RESEARCH, 2023, 49 (03) : 1535 - 1565
  • [24] On constrained optimization with nonconvex regularization
    Birgin, E. G.
    Martinez, J. M.
    Ramos, A.
    NUMERICAL ALGORITHMS, 2021, 86 (03) : 1165 - 1188
  • [25] NEW PRIMAL-DUAL ALGORITHMS FOR A CLASS OF NONSMOOTH AND NONLINEAR CONVEX-CONCAVE MINIMAX PROBLEMS
    Zhu, Yuzixuan
    Liu, Deyi
    Tran-Dinh, Quoc
    SIAM JOURNAL ON OPTIMIZATION, 2022, 32 (04) : 2580 - 2611
  • [26] A filter proximal bundle method for nonsmooth nonconvex constrained optimization
    Najmeh Hoseini Monjezi
    S. Nobakhtian
    Journal of Global Optimization, 2021, 79 : 1 - 37
  • [27] Constrained Nonconvex Nonsmooth Optimization via Proximal Bundle Method
    Yang, Yang
    Pang, Liping
    Ma, Xuefei
    Shen, Jie
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2014, 163 (03) : 900 - 925
  • [28] A filter proximal bundle method for nonsmooth nonconvex constrained optimization
    Hoseini Monjezi, Najmeh
    Nobakhtian, S.
    JOURNAL OF GLOBAL OPTIMIZATION, 2021, 79 (01) : 1 - 37
  • [29] Constrained Nonconvex Nonsmooth Optimization via Proximal Bundle Method
    Yang Yang
    Liping Pang
    Xuefei Ma
    Jie Shen
    Journal of Optimization Theory and Applications, 2014, 163 : 900 - 925
  • [30] A Triple Stabilized Bundle Method for Constrained Nonconvex Nonsmooth Optimization
    Dembele, Andre
    Ndiaye, Babacar M.
    Ouorou, Adam
    Degla, Guy
    ADVANCED COMPUTATIONAL METHODS FOR KNOWLEDGE ENGINEERING (ICCSAMA 2019), 2020, 1121 : 75 - 87