Volume Growth, Number of Ends, and the Topology of a Complete Submanifold

被引:0
作者
Vicent Gimeno
Vicente Palmer
机构
[1] Universitat Jaume I,Departament de Matemàtiques—Institute of New Imaging Technologies
来源
The Journal of Geometric Analysis | 2014年 / 24卷
关键词
Volume growth; Minimal submanifold; End; Hessian-Index comparison theory; Extrinsic distance; Total extrinsic curvature; Second fundamental form; Gap theorem; Bernstein-type theorem; 53A20; 53C40; 53C42;
D O I
暂无
中图分类号
学科分类号
摘要
Given a complete isometric immersion φ:Pm⟶Nn in an ambient Riemannian manifold Nn with a pole and with radial sectional curvatures bounded from above by the corresponding radial sectional curvatures of a radially symmetric space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$M^{n}_{w}$\end{document}, we determine a set of conditions on the extrinsic curvatures of P that guarantee that the immersion is proper and that P has finite topology in line with the results reported in Bessa et al. (Commun. Anal. Geom. 15(4):725–732, 2007) and Bessa and Costa (Glasg. Math. J. 51:669–680, 2009). When the ambient manifold is a radially symmetric space, an inequality is shown between the (extrinsic) volume growth of a complete and minimal submanifold and its number of ends, which generalizes the classical inequality stated in Anderson (Preprint IHES, 1984) for complete and minimal submanifolds in ℝn. As a corollary we obtain the corresponding inequality between the (extrinsic) volume growth and the number of ends of a complete and minimal submanifold in hyperbolic space, together with Bernstein-type results for such submanifolds in Euclidean and hyperbolic spaces, in the manner of the work Kasue and Sugahara (Osaka J. Math. 24:679–704, 1987).
引用
收藏
页码:1346 / 1367
页数:21
相关论文
共 25 条
  • [1] Bessa G.P.(2007)Complete submanifolds of ℝ Commun. Anal. Geom. 15 725-732
  • [2] Jorge L.(2009) with finite topology Glasg. Math. J. 51 669-680
  • [3] Montenegro J.F.(1995)On submanifolds with Tamed second fundamental form J. Math. Sci. Univ. Tokyo 2 657-669
  • [4] Bessa G.P.(1982)On the volume growth and the topology of complete minimal submanifolds of a Euclidean space Duke Math. J. 49 731-756
  • [5] Costa M.S.(1982)Gap theorems for noncompact Riemannian manifolds Proc. Nat. Acad. Sci. USA 79 714-715
  • [6] Chen Q.(1999)On a new gap phenomenon in Riemannian geometry Bull. Am. Math. Soc. 36 135-249
  • [7] Greene R.(1987)Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds Osaka J. Math. 24 679-704
  • [8] Wu H.(1986)Gap theorems for certain submanifolds of Euclidean spaces and hyperbolic space forms J. Math. Soc. Jpn. 38 473-492
  • [9] Greene R.(2006)Gap theorems for minimal submanifolds of Euclidean space Proc. Lond. Math. Soc. (3) 93 253-272
  • [10] Wu H.(2002)Torsional rigidity of minimal submanifolds Arch. Math. 79 507-514