Co-overexpression of AVP1 and AtNHX1 in Cotton Further Improves Drought and Salt Tolerance in Transgenic Cotton Plants

被引:0
|
作者
Guoxin Shen
Jia Wei
Xiaoyun Qiu
Rongbin Hu
Sundaram Kuppu
Dick Auld
Eduardo Blumwald
Roberto Gaxiola
Paxton Payton
Hong Zhang
机构
[1] Zhejiang Academy of Agricultural Sciences,Sericultural Research Institute
[2] Texas Tech University,Department of Biological Sciences
[3] Texas Tech University,Department of Plant and Soil Sciences
[4] University of California,Department of Plant Sciences
[5] Arizona State University,School of Life Sciences
[6] USDA Cropping Systems Research Laboratory,undefined
来源
关键词
Auxin transport; Cotton; Drought tolerance; Salt tolerance;
D O I
暂无
中图分类号
学科分类号
摘要
Salinity and drought are two major environmental stresses that limit the growth and productivity of cotton. To improve cotton’s drought and salt tolerance, transgenic cotton plants expressing the Arabidopsis vacuolar Na+/H+ antiporter gene AtNHX1 and H+-pyrophosphatase gene AVP1 were produced by cross-pollination of two single-gene-overexpressing plants. The salt tolerance and drought tolerance were further enhanced by simultaneously overexpressing AVP1 and AtNHX1 in comparison to AVP1 or AtNHX1 single-gene-overexpressing plants and to wild-type plants. Plant height, boll number, and fiber yield of AVP1/AtNHX1-co-overexpressing plants were higher than those of AVP1-overexpressing, AtNHX1-overexpressing, segregated non-transgenic line, and wild-type plants under saline and drought conditions. The photosynthetic rate of AVP1/AtNHX1-co-overexpressing plants was significantly higher than that of single-gene-overexpressing and wild-type plants under 200 mM NaCl treatment. In addition, the root systems of AVP1/AtNHX1-co-overexpressing plants were larger than those of single-gene-overexpressing and wild-type plants, which was likely due to increased auxin polar transport in the root systems of the AVP1/AtNHX1-co-overexpressing plants. Moreover, these AVP1/AtNHX1-co-overexpressing cotton plants produced 24 % higher fiber yield under low-irrigation conditions and 35 % higher fiber yield under dryland conditions as compared to wild-type cotton in the field.
引用
收藏
页码:167 / 177
页数:10
相关论文
共 50 条
  • [21] DgCspC gene overexpression improves cotton yield and tolerance to drought and salt stress comparison with wild-type plants
    Xia, Wenwen
    Zong, Jiahang
    Zheng, Kai
    Wang, Yuan
    Zhang, Dongling
    Guo, Sandui
    Sun, Guoqing
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [22] Overexpression of AtNHX1, a Vacuolar Na+/H+ Antiporter from Arabidopsis thalina, in Petunia hybrida Enhances Salt and Drought Tolerance
    Xu, Kai
    Hong, Ping
    Luo, Lijun
    Xia, Tao
    JOURNAL OF PLANT BIOLOGY, 2009, 52 (05) : 453 - 461
  • [23] Na+/H+ and K+/H+ antiporters AtNHX1 and AtNHX3 from Arabidopsis improve salt and drought tolerance in transgenic poplar
    Yang, L.
    Liu, H.
    Fu, S. M.
    Ge, H. M.
    Tang, R. J.
    Yang, Y.
    Wang, H. H.
    Zhang, H. X.
    BIOLOGIA PLANTARUM, 2017, 61 (04) : 641 - 650
  • [24] Overexpression of AtNHX1, a Vacuolar Na+/H+ Antiporter from Arabidopsis thalina, in Petunia hybrida Enhances Salt and Drought Tolerance
    Kai Xu
    Ping Hong
    Lijun Luo
    Tao Xia
    Journal of Plant Biology, 2009, 52 : 453 - 461
  • [25] COMPARISON OF RHIZOSPHERIC BACTERIAL POPULATIONS AND GROWTH PROMOTION OF AVP1 TRANSGENIC AND NON-TRANSGENIC COTTON BY BACTERIAL INOCULATIONS
    Arshad, M.
    Arshad, M.
    Leveaue, J. H.
    Asad, S.
    Imran, A.
    Mirza, M. S.
    JOURNAL OF ANIMAL AND PLANT SCIENCES, 2016, 26 (05): : 1284 - 1290
  • [26] Overexpression of Na+/H+ antiporter gene AtNHX1 from Arabidopsis thaliana improves the salt tolerance of kiwifruit (Actinidia deliciosa)
    Tian, N.
    Wang, J.
    Xu, Z. Q.
    SOUTH AFRICAN JOURNAL OF BOTANY, 2011, 77 (01) : 160 - 169
  • [27] RETRACTION: Overexpression of a cotton annexin gene, GhAnn1, enhances drought and salt stress tolerance in transgenic cotton (Retraction of Vol 87, Pg 47, 2015)
    Zhang, Feng
    Li, Shufen
    Yang, Shuming
    Wang, Like
    Guo, Wangzhen
    PLANT MOLECULAR BIOLOGY, 2018, 98 (1-2) : 185 - 185
  • [28] Overexpression of cotton GhNAC072 gene enhances drought and salt stress tolerance in transgenic Arabidopsis
    Mehari, Teame Gereziher
    Hou, Yuqing
    Xu, Yanchao
    Umer, Muhammad Jawad
    Shiraku, Margaret Linyerera
    Wang, Yuhong
    Wang, Heng
    Peng, Renhai
    Wei, Yangyang
    Cai, Xiaoyan
    Zhou, Zhongli
    Liu, Fang
    BMC GENOMICS, 2022, 23 (01)
  • [29] Overexpression of Cotton a DTX/MATE Gene Enhances Drought, Salt, and Cold Stress Tolerance in Transgenic Arabidopsis
    Lu, Pu
    Magwanga, Richard Odongo
    Kirungu, Joy Nyangasi
    Hu, Yangguang
    Dong, Qi
    Cai, Xiaoyan
    Zhou, Zhongli
    Wang, Xingxing
    Zhang, Zhenmei
    Hou, Yuqing
    Wang, Kunbo
    Liu, Fang
    FRONTIERS IN PLANT SCIENCE, 2019, 10
  • [30] Overexpression of cotton GhNAC072 gene enhances drought and salt stress tolerance in transgenic Arabidopsis
    Teame Gereziher Mehari
    Yuqing Hou
    Yanchao Xu
    Muhammad Jawad Umer
    Margaret Linyerera Shiraku
    Yuhong Wang
    Heng Wang
    Renhai Peng
    Yangyang Wei
    Xiaoyan Cai
    Zhongli Zhou
    Fang Liu
    BMC Genomics, 23