Cosmological sudden singularities in f(R, T) gravity

被引:0
|
作者
Tiago B. Gonçalves
João Luís Rosa
Francisco S. N. Lobo
机构
[1] Instituto de Astrofísica e Ciências do Espaço,Departamento de Física
[2] Faculdade de Ciências da Universidade de Lisboa,Institute of Physics
[3] Faculdade de Ciências da Universidade de Lisboa,undefined
[4] University of Tartu,undefined
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In this work, we study the possibility of finite-time future cosmological singularities appearing in f(R, T) gravity, where R is the Ricci scalar and T is the trace of the stress-energy tensor. We present the theory in both the geometrical and the dynamically equivalent scalar–tensor representation and obtain the respective equations of motion. In a background Friedmann–Lemaître–Robertson–Walker (FLRW) universe with an arbitrary curvature and for a generic C∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^\infty $$\end{document} function f(R, T), we prove that the conservation of the stress-energy tensor prevents the appearance of sudden singularities in the cosmological context at any order in the time-derivatives of the scale factor. However, if this assumption is dropped, the theory allows for sudden singularities to appear at the level of the third time-derivative of the scale factor a(t), which are compensated by divergences in either the first time-derivatives of the energy density ρ(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho (t)$$\end{document} or the isotropic pressure p(t). For these cases, we introduce a cosmological model featuring a sudden singularity that is consistent with the current measurements for the cosmological parameters, namely, the Hubble constant, deceleration parameter, and age of the universe, and provide predictions for the still unmeasured jerk and snap parameters. Finally, we analyse the constraints on a particular model of the function f(R, T) that guarantees that the system evolves in a direction favorable to the energy conditions at the divergence time.
引用
收藏
相关论文
共 50 条
  • [41] Evaluation of transit cosmological model in f(R,Tφ) theory of gravity
    Jayas, Bhojraj Singh
    Bhardwaj, Vinod Kumar
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2024, 39 (29):
  • [42] Non-static cosmological model in f (R, T) gravity
    Mishra, B.
    Sahoo, P. K.
    Tarai, Sankarsan
    ASTROPHYSICS AND SPACE SCIENCE, 2015, 359 (01)
  • [43] A complete cosmological scenario from f(R, Tφ) gravity theory
    Moraes, P. H. R. S.
    Santos, J. R. L.
    EUROPEAN PHYSICAL JOURNAL C, 2016, 76 (02): : 1 - 9
  • [44] Bianchi type string cosmological models in f(R,T) gravity
    P. K. Sahoo
    B. Mishra
    Parbati Sahoo
    S. K. J. Pacif
    The European Physical Journal Plus, 131
  • [45] Time dependent G and Λ cosmological model in f(R,T) gravity
    Kumrah, Leishingam
    Singh, S. Surendra
    Devi, Lambamayum Anjana
    NEW ASTRONOMY, 2022, 93
  • [46] Bulk viscous cosmological models in f(R,T) theory of gravity
    Mahanta, K. L.
    ASTROPHYSICS AND SPACE SCIENCE, 2014, 353 (02) : 683 - 689
  • [47] Cosmological analysis of scalar field models in f(R, T) gravity
    Sharif, M.
    Nawazish, Iqra
    EUROPEAN PHYSICAL JOURNAL C, 2017, 77 (03):
  • [48] Cosmological dynamics of anisotropic dark energy in f(R, T) gravity
    Singh, M. Saratchandra
    Singh, S. Surendra
    NEW ASTRONOMY, 2019, 72 : 36 - 41
  • [49] Mixture of fluids in f(R,T) theory of gravity with cosmological constant Λ
    Solanke, Y. S.
    Mhaske, Sandhya
    Dagwal, V. J.
    Pawar, D. D.
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2024,
  • [50] Accelerating anisotropic cosmological model in f(R,T) theory of gravity
    R. Santhi Kumar
    B. Satyannarayana
    Indian Journal of Physics, 2017, 91 : 1293 - 1296