Cosmological sudden singularities in f(R, T) gravity

被引:0
|
作者
Tiago B. Gonçalves
João Luís Rosa
Francisco S. N. Lobo
机构
[1] Instituto de Astrofísica e Ciências do Espaço,Departamento de Física
[2] Faculdade de Ciências da Universidade de Lisboa,Institute of Physics
[3] Faculdade de Ciências da Universidade de Lisboa,undefined
[4] University of Tartu,undefined
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In this work, we study the possibility of finite-time future cosmological singularities appearing in f(R, T) gravity, where R is the Ricci scalar and T is the trace of the stress-energy tensor. We present the theory in both the geometrical and the dynamically equivalent scalar–tensor representation and obtain the respective equations of motion. In a background Friedmann–Lemaître–Robertson–Walker (FLRW) universe with an arbitrary curvature and for a generic C∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^\infty $$\end{document} function f(R, T), we prove that the conservation of the stress-energy tensor prevents the appearance of sudden singularities in the cosmological context at any order in the time-derivatives of the scale factor. However, if this assumption is dropped, the theory allows for sudden singularities to appear at the level of the third time-derivative of the scale factor a(t), which are compensated by divergences in either the first time-derivatives of the energy density ρ(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho (t)$$\end{document} or the isotropic pressure p(t). For these cases, we introduce a cosmological model featuring a sudden singularity that is consistent with the current measurements for the cosmological parameters, namely, the Hubble constant, deceleration parameter, and age of the universe, and provide predictions for the still unmeasured jerk and snap parameters. Finally, we analyse the constraints on a particular model of the function f(R, T) that guarantees that the system evolves in a direction favorable to the energy conditions at the divergence time.
引用
收藏
相关论文
共 50 条
  • [31] Two fluid cosmological models in f(R,T) theory of gravity
    Solanke, Y. S.
    Mhaske, Sandhya
    Pawar, D. D.
    Dagwal, V. J.
    MODERN PHYSICS LETTERS A, 2023, 38 (18N19)
  • [32] Kaluza-Klein Cosmological Model in f(R, T) Gravity
    Reddy, D. R. K.
    Naidu, R. L.
    Satyanarayana, B.
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2012, 51 (10) : 3222 - 3227
  • [33] Cosmological applications of F(R,T) gravity with dynamical curvature and torsion
    Saridakis, Emmanuel N.
    Myrzakul, Shynaray
    Myrzakulov, Kairat
    Yerzhanov, Koblandy
    PHYSICAL REVIEW D, 2020, 102 (02):
  • [34] Accelerating anisotropic cosmological model in f(R,T) theory of gravity
    Kumar, R. Santhi
    Satyannarayana, B.
    INDIAN JOURNAL OF PHYSICS, 2017, 91 (10) : 1293 - 1296
  • [35] A new class of Bianchi cosmological models in f(R,T) gravity
    Chaubey, R.
    Shukla, A. K.
    ASTROPHYSICS AND SPACE SCIENCE, 2013, 343 (01) : 415 - 422
  • [36] Bulk viscous fluid cosmological models in f(R, T) gravity
    Satish, J.
    Venkateswarlu, R.
    CHINESE JOURNAL OF PHYSICS, 2016, 54 (05) : 830 - 838
  • [37] Bianchi type string cosmological models in f(R, T) gravity
    Sahoo, P. K.
    Mishra, B.
    Sahoo, Parbati
    Pacif, S. K. J.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2016, 131 (09):
  • [38] Compact stars with variable cosmological constant in f(R, T) gravity
    Ilyas, M.
    ASTROPHYSICS AND SPACE SCIENCE, 2020, 365 (11)
  • [39] A new class of Bianchi cosmological models in f(R,T) gravity
    R. Chaubey
    A. K. Shukla
    Astrophysics and Space Science, 2013, 343 : 415 - 422
  • [40] Cosmological models with variable anisotropic parameter in f(R, T) gravity
    B. Mishra
    F. Md. Esmeili
    Saibal Ray
    Indian Journal of Physics, 2021, 95 : 2245 - 2254