Cosmological sudden singularities in f(R, T) gravity

被引:0
|
作者
Tiago B. Gonçalves
João Luís Rosa
Francisco S. N. Lobo
机构
[1] Instituto de Astrofísica e Ciências do Espaço,Departamento de Física
[2] Faculdade de Ciências da Universidade de Lisboa,Institute of Physics
[3] Faculdade de Ciências da Universidade de Lisboa,undefined
[4] University of Tartu,undefined
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In this work, we study the possibility of finite-time future cosmological singularities appearing in f(R, T) gravity, where R is the Ricci scalar and T is the trace of the stress-energy tensor. We present the theory in both the geometrical and the dynamically equivalent scalar–tensor representation and obtain the respective equations of motion. In a background Friedmann–Lemaître–Robertson–Walker (FLRW) universe with an arbitrary curvature and for a generic C∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^\infty $$\end{document} function f(R, T), we prove that the conservation of the stress-energy tensor prevents the appearance of sudden singularities in the cosmological context at any order in the time-derivatives of the scale factor. However, if this assumption is dropped, the theory allows for sudden singularities to appear at the level of the third time-derivative of the scale factor a(t), which are compensated by divergences in either the first time-derivatives of the energy density ρ(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho (t)$$\end{document} or the isotropic pressure p(t). For these cases, we introduce a cosmological model featuring a sudden singularity that is consistent with the current measurements for the cosmological parameters, namely, the Hubble constant, deceleration parameter, and age of the universe, and provide predictions for the still unmeasured jerk and snap parameters. Finally, we analyse the constraints on a particular model of the function f(R, T) that guarantees that the system evolves in a direction favorable to the energy conditions at the divergence time.
引用
收藏
相关论文
共 50 条
  • [21] Mixed fluid cosmological model in f(R, T) gravity
    Sahoo, Parbati
    Taori, Barkha
    Mahanta, K. L.
    CANADIAN JOURNAL OF PHYSICS, 2020, 98 (11) : 1015 - 1022
  • [22] Cosmological aspects of a hyperbolic solution in f(R, T) gravity
    Nagpal, Ritika
    Singh, J. K.
    Beesham, A.
    Shabani, Hamid
    ANNALS OF PHYSICS, 2019, 405 : 234 - 255
  • [23] Axially symmetric cosmological model in f(R, T) gravity
    P. K. Sahoo
    B. Mishra
    G. Chakradhar Reddy
    The European Physical Journal Plus, 129
  • [24] Cosmological viscous fluid models describing infinite time singularities in f(T) gravity
    R. D. Boko
    M. J. S. Houndjo
    The European Physical Journal C, 2020, 80
  • [25] Cosmological viscous fluid models describing infinite time singularities in f(T) gravity
    Boko, R. D.
    Houndjo, M. J. S.
    EUROPEAN PHYSICAL JOURNAL C, 2020, 80 (09):
  • [26] Cosmological Models with a Varying Polynomial Deceleration Parameter in f(R) and f(R,T)-Gravity
    Bakry, M. A.
    Eid, A.
    Khader, M. M.
    RUSSIAN PHYSICS JOURNAL, 2022, 64 (10) : 1831 - 1844
  • [27] Kaluza-Klein cosmological model in f(R, T) gravity with Λ(T)
    Sahoo, P. K.
    Mishra, B.
    Tripathy, S. K.
    INDIAN JOURNAL OF PHYSICS, 2016, 90 (04) : 485 - 493
  • [28] Cosmological Models with a Varying Polynomial Deceleration Parameter in f(R) and f(R,T)-Gravity
    M. A. Bakry
    A. Eid
    M. M. Khader
    Russian Physics Journal, 2022, 64 : 1831 - 1844
  • [29] Cosmological dynamics in f(R) gravity
    Guo, Jun-Qi
    Frolov, Andrei V.
    PHYSICAL REVIEW D, 2013, 88 (12)
  • [30] Cosmological perturbations in F(R) gravity
    Matsumoto, Jiro
    PHYSICAL REVIEW D, 2013, 87 (10):