Weight aspect exponential sums for Fourier coefficients of cusp forms

被引:0
作者
Fei Hou
机构
[1] Xi’an University of Technology,School of Sciences
来源
Monatshefte für Mathematik | 2022年 / 199卷
关键词
Holomorphic cusp forms; Explicit dependence; Fourier coefficients; Exponential sums; 11F11; 11F30; 11L07;
D O I
暂无
中图分类号
学科分类号
摘要
Let k≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge 2$$\end{document} be an even integer. Let f be a primitive holomorphic cusp form of weight k, with λf(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _f(n)$$\end{document} being its n-th Fourier coefficient. We explicitly determine the dependence on the weight aspect by proving ∑n≤Xλf(n)en2α+nβ≪(Xk)εX2122k3122\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned}\sum _{n\le X}\lambda _f(n)e{\left(n^2\alpha +n\beta \right)}\ll (Xk)^\varepsilon X^{ \frac{21}{22} } k^{ \frac{31}{22} } \end{aligned}$$\end{document}uniformly for k, and any α,β∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha ,\beta \in {\mathbb {R}}$$\end{document}, where the implied constant depends only on ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document}. In addition we obtain an analogue of the Prime Number Theorem associated to the Fourier coefficients of cusp forms ∑n≤XΛ(n)λf(n)en2α+nβ≪Xexp-clogXlogX+logk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned}\sum _{n\le X} \Lambda (n)\lambda _{f}(n)e{\left(n^2\alpha +n\beta \right)}\ll X\exp \left(-\frac{c\log X}{\sqrt{\log X}+\log k}\right) \end{aligned}$$\end{document}uniformly for k<X1/31-ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k< X^{1/31-\varepsilon }$$\end{document} and any α,β∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha ,\beta \in {\mathbb {R}}$$\end{document}, where the implied constant is absolute.
引用
收藏
页码:527 / 553
页数:26
相关论文
共 36 条
[1]  
Blomer V(2007)A Burgess-like subconvex bound for twisted Forum Math. 19 61-105
[2]  
Harcos G(2000)-functions (with Appendix 2 by Z. Mao) Asian J. Math. 4 757-774
[3]  
Michel P(2013)Bounds for certain exponential sums J. Number Theory 133 83-104
[4]  
Cochrane T(2006)Additive twists of Fourier coefficients of modular forms Invent. Math. 163 581-655
[5]  
Zheng Z(2013)The subconvexity problem for Rankin-Selberg Math. Ann. 356 209-216
[6]  
Godber D(2016)-functions and equidistribution of Heegner points. II Math. Z. 283 555-579
[7]  
Harcos G(2016)On the sup-norm of Maass cusp forms of large level. III Quart. J. Math. 67 285-301
[8]  
Michel P(2016)Hybrid subconvexity bounds for J. Number Theory 159 370-383
[9]  
Harcos G(2019)On exponential sums involving coefficients of Math. Z. 292 1105-1122
[10]  
Templier N(1987)-functions for Proc. Indian Acad. Sci. Math. Sci. 97 157-166