We prove the following formula
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\int_{\mathbb{R}^{N}} u|u|^{p-2} \Delta u = -(p-1) \int_{\mathbb{R}^{N}}|u|^{p-2}|\nabla u|^{2}$$\end{document}for \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$u \in {W^{2, p}}(\mathbb{R}^{N})$$\end{document} 1 < p < + ∞, and related more general results. The equality above easily follows by integrating by parts for p ≥ 2. The case 1 < p < 2 is more involved because of the presence of the singularity of |u|p-2 near the zeroes of u and a sectional characterization of Sobolev spaces is required.