Automated structure modeling of large protein assemblies using crosslinks as distance restraints

被引:0
作者
Ferber M. [1 ]
Kosinski J. [2 ]
Ori A. [2 ,3 ]
Rashid U.J. [2 ]
Moreno-Morcillo M. [2 ,4 ]
Simon B. [2 ]
Bouvier G. [1 ]
Batista P.R. [1 ,5 ]
Muller C.W. [2 ]
Beck M. [2 ]
Nilges M. [1 ]
机构
[1] Institut Pasteur, Unité de Bioinformatique Structurale, Département de Biologie Structurale et Chimie, Paris
[2] European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg
[3] Leibniz Institute on Aging-Fritz Lipmann Institute, Jena
[4] Structural Bases of Genome Integrity Group, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre, Madrid
[5] Fundacąõ Oswaldo Cruz, Programa de Computacąõ Científica, Rio de Janeiro
关键词
D O I
10.1038/nmeth.3838
中图分类号
学科分类号
摘要
Crosslinking mass spectrometry is increasingly used for structural characterization of multisubunit protein complexes. Chemical crosslinking captures conformational heterogeneity, which typically results in conflicting crosslinks that cannot be satisfied in a single model, making detailed modeling a challenging task. Here we introduce an automated modeling method dedicated to large protein assemblies ('XL-MOD' software is available at http://aria.pasteur.fr/supplementary-data/x-links) that (i) uses a form of spatial restraints that realistically reflects the distribution of experimentally observed crosslinked distances; (ii) automatically deals with ambiguous and/or conflicting crosslinks and identifies alternative conformations within a Bayesian framework; and (iii) allows subunit structures to be flexible during conformational sampling. We demonstrate our method by testing it on known structures and available crosslinking data. We also crosslinked and modeled the 17-subunit yeast RNA polymerase III at atomic resolution; the resulting model agrees remarkably well with recently published cryoelectron microscopy structures and provides additional insights into the polymerase structure. © 2016 Nature America, Inc.
引用
收藏
页码:515 / 520
页数:5
相关论文
共 50 条
  • [41] Integrating 19F Distance Restraints for Accurate Protein Structure Determination by Magic Angle Spinning NMR Spectroscopy
    Runge, Brent R.
    Zadorozhnyi, Roman
    Quinn, Caitlin M.
    Russell, Ryan W.
    Lu, Manman
    Antolinez, Santiago
    Struppe, Jochem
    Schwieters, Charles D.
    Byeon, In-Ja L.
    Hadden-Perilla, Jodi A.
    Gronenborn, Angela M.
    Polenova, Tatyana
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2024, 146 (44) : 30483 - 30494
  • [42] Automated NOESY interpretation with ambiguous distance restraints: The refined NMR solution structure of the pleckstrin homology domain from beta-spectrin
    Nilges, M
    Macias, MJ
    ODonoghue, SI
    Oschkinat, H
    [J]. JOURNAL OF MOLECULAR BIOLOGY, 1997, 269 (03) : 408 - 422
  • [43] Automated protein crystal structure determination using ELVES
    Holton, J
    Alber, T
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (06) : 1537 - 1542
  • [44] AN EVALUATION OF THE PERFORMANCE OF AN AUTOMATED PROCEDURE FOR COMPARATIVE MODELING OF PROTEIN TERTIARY STRUCTURE
    SRINIVASAN, N
    BLUNDELL, TL
    [J]. PROTEIN ENGINEERING, 1993, 6 (05): : 501 - 512
  • [45] DR-SIP: protocols for higher order structure modeling with distance restraints- and cyclic symmetry-imposed packing
    Chan, Justin
    Zou, Jinhao
    Ortiz, Christopher Llynard
    Chien, Chi-Hong Chang
    Pan, Rong-Long
    Yang, Lee-Wei
    [J]. BIOINFORMATICS, 2020, 36 (02) : 449 - 461
  • [46] Protein structure prediction using global optimization by basin-hopping with NMR shift restraints
    Hoffmann, Falk
    Strodel, Birgit
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2013, 138 (02)
  • [47] MODELING PROTEIN-STRUCTURE USING DATABASES
    STERNBERG, MJE
    [J]. PROTEIN ENGINEERING, 1987, 1 (03): : 227 - 227
  • [48] Protein structure prediction using sparse NOE and RDC restraints with Rosetta in CASP13
    Kuenze, Georg
    Meiler, Jens
    [J]. PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2019, 87 (12) : 1341 - 1350
  • [49] Protein structure determination using a database of interatomic distance probabilities
    Wall, ME
    Subramaniam, S
    Phillips, GN
    [J]. PROTEIN SCIENCE, 1999, 8 (12) : 2720 - 2727
  • [50] Determining protein structure using the distance geometry program APA
    Reams, R
    Chatham, G
    Glunt, W
    McDonald, D
    Hayden, T
    [J]. COMPUTERS & CHEMISTRY, 1999, 23 (02): : 153 - 163