Summation of Fourier Series on the Infinite-Dimensional Torus

被引:0
作者
D. V. Fufaev
机构
[1] Lomonosov Moscow State University,
来源
Mathematical Notes | 2018年 / 103卷
关键词
Jessen system; convergence almost everywhere; infinite-dimensional torus; projective tensor product;
D O I
暂无
中图分类号
学科分类号
摘要
Conditions for the convergence of Fejér means for functions on the infinite-dimensional torus over cubes and rectangles are obtained, and a generalization of these results to the case of products of abstract measure spaces is proposed.
引用
收藏
页码:990 / 996
页数:6
相关论文
共 12 条
  • [1] Jessen B.(1934)The theory of integration in a space of an infinite number of dimensions Acta Math. 63 249-323
  • [2] Platonov S. S.(2014)Certain approximation problems for functions on the infinite-dimensional torus: analogs of the Jackson theorem Algebra Anal. 26 99-120
  • [3] Berg Ch.(1976)Potential theory on the infinite dimensional torus Invent. Math. 32 49-100
  • [4] Holley R.(1981)Diffusions on an infinite-dimensional torus J. Funct. Anal. 42 29-63
  • [5] Stroock D. W.(1987)On the Wiener semigroup and harmonic analysis on the infinite dimensional torus Acta Appl.Math. 10 131-143
  • [6] Taylor Th. J. S.(2004)On the sample parts of diagonal Brownian motions on the infinite dimensional torus Ann. Inst. H. PoincaréProbab. Statist. 40 227-254
  • [7] Bendikov A.(2007)Convergence of trigonometric series of countably many variables Fundament. Fiz.-Matem. Probl. iModel. Tekh.-Tekhnol.Sist. 10 24-27
  • [8] Saloff-Coste L.(2016)Convergence of products of operator orientations Vestnik Moskov. Univ.. Ser. 1. Matem., Mekh. 4 23-33
  • [9] Kholshchevnikova N. N.(2014)Generalization of the Abel–Poissonmethod for summations of Fourier trigonometric series Mat. Zametki 96 473-475
  • [10] Fufaev D. V.(2016)Almost everywhere summability of Fourier series with indication of the set of convergence Mat. Zametki 100 163-179