Exact analytical solutions for some popular benchmark problems in topology optimization

被引:0
作者
G. I. N. Rozvany
机构
[1] FB 10,
[2] Essen University,undefined
来源
Structural optimization | 1998年 / 15卷
关键词
Civil Engineer; Topology Optimization; Plane Stress; Shape Optimization; Benchmark Problem;
D O I
暂无
中图分类号
学科分类号
摘要
The aim of this paper is to provide the exact analytical truss solutions for some “benchmark” problems, which are often used as test examples in both discretized layout optimization of trusses and variable topology (or generalized) shape optimization of perforated plates under plane stress.
引用
收藏
页码:42 / 48
页数:6
相关论文
共 39 条
  • [1] Allaire G.(1993)Explicit bounds on the elastic energy of a two-phase composite in two space dimensions Q. Appl. Math. 51 675-699
  • [2] Kohn R.V.(1994)Optimization methods for truss geometry and topology design Struct. Optim. 7 141-159
  • [3] Bendsøe M.P.(1993)The Michell layout problem as a low volume fraction limit of the perforated plate topology optimization problem: an asymptotic study Struct. Optim. 6 263-267
  • [4] Ben-Tal A.(1988)Generating optimal topologies in structural design using a homogenization method Comp. Meth. Appl. Mech. Eng. 71 197-224
  • [5] Zowe J.(1967)Half-plane slip-line fields and Michell structures Quart. J. Appl. Math. 20 453-469
  • [6] Bendsøe M.P.(1992)Shape optimization of structures for multiple load conditions using a homogenizaton method Struct. Optim. 4 17-22
  • [7] Haber R.B.(1996)A new approach to variable-topology shape design using a constraint on perimeter Struct. Optim. 11 1-12
  • [8] Bendsøe M.P.(1981)Topology and optimality of certain trusses J. Struct. Div. ASCE 107 383-393
  • [9] Kikuchi N.(1994)Extended exact solutions for least-weight truss layouts — Part I: cantilever with a horizontal axis of symmetry Int. J. Mech. Sci. 36 375-398
  • [10] Chan H.S.Y.(1994)Extended exact solutions for least-weight truss layouts — Part II: unsymmetric cantilevers Int. J. Mech. Sci. 36 399-419