On the sub-mixed fractional Brownian motion

被引:0
作者
El-Nouty Charles
Zili Mounir
机构
[1] Université Paris XIII,Sorbonne Paris Cité, LAGA
[2] Faculty of Sciences of Monastir,Department of Mathematics
来源
Applied Mathematics-A Journal of Chinese Universities | 2015年 / 30卷
关键词
mixed Gaussian processes; sub-fractional Brownian motion; no stationary increments; semimartingale; convexity; 60G15; 60G17; 60G20;
D O I
暂无
中图分类号
学科分类号
摘要
Let {StH, t ≥ 0} be a linear combination of a Brownian motion and an independent sub-fractional Brownian motion with Hurst index 0 < H < 1. Its main properties are studied. They suggest that SH lies between the sub-fractional Brownian motion and the mixed fractional Brownian motion. We also determine the values of H for which SH is not a semi-martingale.
引用
收藏
页码:27 / 43
页数:16
相关论文
共 17 条
[1]  
Baudoin F(2003)Equivalence of Volterra processes Stochastic Process Appl 107 327-350
[2]  
Nualart D(2004)Sub-fractional Brownian motion and its relation to occupation times Statist Probab Lett 69 405-419
[3]  
Bojdecki T(2004)Fractional Brownian Density and its Self-Intersection Local Time of Order k J Theoret Probab 17 717-739
[4]  
Gorostiza L G(2010)Particle systems with quasi-homogeneous initial states and their occupation time fluctuations Electron Commun Probab 15 191-202
[5]  
Talarczyk A(2001)Mixed fractional Brownian motion Bernoulli 7 913-934
[6]  
Bojdecki T(2003)The fractional mixed fractional Brownian motion Statist Probab Lett 65 111-120
[7]  
Gorostiza L G(2012)The lower classes of the sub-fractional Brownian motion Stochastic Differential Equations and Processes 7 179-196
[8]  
Talarczyk A(2009)A decomposition of sub-fractional Brownian motion Math Rep (Bucur) 11 67-74
[9]  
Bojdecki T(2007)Some properties of the sub-fractional Brownian motion Stochastics 79 431-448
[10]  
Gorostiza L G(undefined)undefined undefined undefined undefined-undefined