Development of Maximum Bubble Pressure Method for Surface Tension Measurement of High Viscosity Molten Silicate

被引:0
|
作者
Osamu Takeda
Hirone Iwamoto
Ryota Sakashita
Chiaki Iseki
Hongmin Zhu
机构
[1] Tohoku University,
来源
关键词
Maximum bubble pressure method; Silicate; Surface tension; Viscosity;
D O I
暂无
中图分类号
学科分类号
摘要
A surface tension measurement method based on the maximum bubble pressure (MBP) method was developed in order to precisely determine the surface tension of molten silicates in this study. Specifically, the influence of viscosity on surface tension measurements was quantified, and the criteria for accurate measurement were investigated. It was found that the MBP apparently increased with an increase in viscosity. This was because extra pressure was required for the flowing liquid inside the capillary due to viscous resistance. It was also expected that the extra pressure would decrease by decreasing the fluid velocity. For silicone oil with a viscosity of 1000mPa·s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1000\,\hbox {mPa}{\cdot }\hbox {s}$$\end{document}, the error on the MBP could be decreased to +1.7 % by increasing the bubble detachment time to 300s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$300\,\hbox {s}$$\end{document}. However, the error was still over 1 % even when the bubble detachment time was increased to 600s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$600\,\hbox {s}$$\end{document}. Therefore, a true value of the MBP was determined by using a curve-fitting technique with a simple relaxation function, and that was succeeded for silicone oil at 1000mPa·s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1000\,\hbox {mPa}{\cdot } \hbox {s}$$\end{document} of viscosity. Furthermore, for silicone oil with a viscosity as high as 10000mPa·s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10\,000\,\hbox {mPa}{\cdot }\hbox {s}$$\end{document}, the apparent MBP approached a true value by interrupting the gas introduction during the pressure rising period and by re-introducing the gas at a slow flow rate. Based on the fundamental investigation at room temperature, the surface tension of the SiO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {SiO}_{2}$$\end{document}–40 mol%Na2O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {mol}\%\hbox {Na}_{2}\hbox {O}$$\end{document} and SiO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {SiO}_{2}$$\end{document}–50 mol%Na2O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {mol}\%\hbox {Na}_{2}\hbox {O}$$\end{document} melts was determined at a high temperature. The obtained value was slightly lower than the literature values, which might be due to the influence of viscosity on surface tension measurements being removed in this study.
引用
收藏
相关论文
共 50 条
  • [1] Development of Maximum Bubble Pressure Method for Surface Tension Measurement of High Viscosity Molten Silicate
    Takeda, Osamu
    Iwamoto, Hirone
    Sakashita, Ryota
    Iseki, Chiaki
    Zhu, Hongmin
    INTERNATIONAL JOURNAL OF THERMOPHYSICS, 2017, 38 (07)
  • [2] Surface tension measurement of glass melts by the maximum bubble pressure method
    Yamashita, M
    Suzuki, M
    Yamanaka, H
    Takahashi, K
    GLASS SCIENCE AND TECHNOLOGY-GLASTECHNISCHE BERICHTE, 2000, 73 (11): : 337 - 343
  • [3] THE MEASUREMENT OF DYNAMIC SURFACE-TENSION BY THE MAXIMUM BUBBLE PRESSURE METHOD
    FAINERMAN, VB
    MILLER, R
    JOOS, P
    COLLOID AND POLYMER SCIENCE, 1994, 272 (06) : 731 - 739
  • [4] Surface tension measurement of oil/refrigerant mixture by maximum bubble pressure method
    Fukuta, Mitsuhiro
    Sumiyama, Junki
    Motozawa, Masaaki
    Yanagisawa, Tadashi
    INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 2017, 73 : 125 - 133
  • [5] EQUILIBRIUM SURFACE-TENSION MEASUREMENT BY THE DECREASING MAXIMUM BUBBLE PRESSURE METHOD
    PAPESCHI, G
    BORDI, S
    COSTA, M
    ANNALI DI CHIMICA, 1981, 71 (7-8) : 407 - 412
  • [6] SURFACE-TENSION MEASUREMENT BY DIFFERENTIAL MAXIMUM BUBBLE PRESSURE METHOD USING A PRESSURE TRANSDUCER
    RAZOUK, R
    WALMSLEY, D
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1974, 47 (02) : 515 - 519
  • [7] Measurement of corium surface tension using the maximum bubble pressure
    Chikhi, N.
    Delacroix, J.
    Fouquart, P.
    Turquais, B.
    NUCLEAR ENGINEERING AND DESIGN, 2021, 379 (379)
  • [8] MEASUREMENT OF THE SURFACE-TENSION BY THE MAXIMUM-BUBBLE-PRESSURE METHOD IN THE MILLISECOND RANGE
    FAINERMAN, VB
    COLLOID JOURNAL OF THE USSR, 1990, 52 (05): : 794 - 799
  • [9] ACCURACY IN MEASUREMENT OF SURFACE-TENSION ACCORDING TO MAXIMUM PRESSURE METHOD IN A GAS BUBBLE
    KISIL, IS
    MALKO, AG
    DRANCHUK, MM
    ZHURNAL FIZICHESKOI KHIMII, 1981, 55 (02): : 318 - 326
  • [10] The surface tension of mercury by the maximum bubble pressure method.
    Bosworth, RCL
    TRANSACTIONS OF THE FARADAY SOCIETY, 1938, 34 (02): : 1501 - 1505