Development of Maximum Bubble Pressure Method for Surface Tension Measurement of High Viscosity Molten Silicate

被引:0
作者
Osamu Takeda
Hirone Iwamoto
Ryota Sakashita
Chiaki Iseki
Hongmin Zhu
机构
[1] Tohoku University,
来源
International Journal of Thermophysics | 2017年 / 38卷
关键词
Maximum bubble pressure method; Silicate; Surface tension; Viscosity;
D O I
暂无
中图分类号
学科分类号
摘要
A surface tension measurement method based on the maximum bubble pressure (MBP) method was developed in order to precisely determine the surface tension of molten silicates in this study. Specifically, the influence of viscosity on surface tension measurements was quantified, and the criteria for accurate measurement were investigated. It was found that the MBP apparently increased with an increase in viscosity. This was because extra pressure was required for the flowing liquid inside the capillary due to viscous resistance. It was also expected that the extra pressure would decrease by decreasing the fluid velocity. For silicone oil with a viscosity of 1000mPa·s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1000\,\hbox {mPa}{\cdot }\hbox {s}$$\end{document}, the error on the MBP could be decreased to +1.7 % by increasing the bubble detachment time to 300s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$300\,\hbox {s}$$\end{document}. However, the error was still over 1 % even when the bubble detachment time was increased to 600s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$600\,\hbox {s}$$\end{document}. Therefore, a true value of the MBP was determined by using a curve-fitting technique with a simple relaxation function, and that was succeeded for silicone oil at 1000mPa·s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1000\,\hbox {mPa}{\cdot } \hbox {s}$$\end{document} of viscosity. Furthermore, for silicone oil with a viscosity as high as 10000mPa·s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10\,000\,\hbox {mPa}{\cdot }\hbox {s}$$\end{document}, the apparent MBP approached a true value by interrupting the gas introduction during the pressure rising period and by re-introducing the gas at a slow flow rate. Based on the fundamental investigation at room temperature, the surface tension of the SiO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {SiO}_{2}$$\end{document}–40 mol%Na2O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {mol}\%\hbox {Na}_{2}\hbox {O}$$\end{document} and SiO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {SiO}_{2}$$\end{document}–50 mol%Na2O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {mol}\%\hbox {Na}_{2}\hbox {O}$$\end{document} melts was determined at a high temperature. The obtained value was slightly lower than the literature values, which might be due to the influence of viscosity on surface tension measurements being removed in this study.
引用
收藏
相关论文
共 13 条
[1]  
Ejima T(1975)undefined J. Jpn. Inst. Metals 39 680-undefined
[2]  
Nakamura E(1994)undefined J. Colloid Interface Sci. 168 281-undefined
[3]  
Hollowell CP(2001)undefined Mater. Trans. 42 2422-undefined
[4]  
Hirt DE(1915)undefined Ann. Physik. 46 413-undefined
[5]  
Nakae H(2015)undefined Int. J. Thermophys. 36 1396-undefined
[6]  
Fukui T(1951)undefined J. Res. NBS 46 385-undefined
[7]  
Schrödinger G(1962)undefined Doklad. Akad. Nauk SSSR 145 592-undefined
[8]  
Kalová J(undefined)undefined undefined undefined undefined-undefined
[9]  
Mareš R(undefined)undefined undefined undefined undefined-undefined
[10]  
Shartsis L(undefined)undefined undefined undefined undefined-undefined