Functional Extended Redundancy Analysis

被引:0
|
作者
Heungsun Hwang
Hye Won Suk
Jang-Han Lee
D. S. Moskowitz
Jooseop Lim
机构
[1] McGill University,Department of Psychology
[2] Chung-Ang University,undefined
[3] Concordia University,undefined
来源
Psychometrika | 2012年 / 77卷
关键词
functional data; extended redundancy analysis; penalized least squares; alternating regularized least-squares algorithm;
D O I
暂无
中图分类号
学科分类号
摘要
We propose a functional version of extended redundancy analysis that examines directional relationships among several sets of multivariate variables. As in extended redundancy analysis, the proposed method posits that a weighed composite of each set of exogenous variables influences a set of endogenous variables. It further considers endogenous and/or exogenous variables functional, varying over time, space, or other continua. Computationally, the method reduces to minimizing a penalized least-squares criterion through the adoption of a basis function expansion approach to approximating functions. We develop an alternating regularized least-squares algorithm to minimize this criterion. We apply the proposed method to real datasets to illustrate the empirical feasibility of the proposed method.
引用
收藏
页码:524 / 542
页数:18
相关论文
共 50 条
  • [41] Anticipated and Adaptive Prediction in Functional Discriminant Analysis
    Preda, Cristian
    Saporta, Gilbert
    Mbarek, Mohamed Hadj
    COMPSTAT'2010: 19TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL STATISTICS, 2010, : 189 - 198
  • [42] Robust principal component analysis for functional data
    N. Locantore
    J. S. Marron
    D. G. Simpson
    N. Tripoli
    J. T. Zhang
    K. L. Cohen
    Graciela Boente
    Ricardo Fraiman
    Babette Brumback
    Christophe Croux
    Jianqing Fan
    Alois Kneip
    John I. Marden
    Daniel Peña
    Javier Prieto
    Jim O. Ramsay
    Mariano J. Valderrama
    Ana M. Aguilera
    N. Locantore
    J. S. Marron
    D. G. Simpson
    N. Tripoli
    J. T. Zhang
    K. L. Cohen
    Test, 1999, 8 (1) : 1 - 73
  • [43] Functional regularized generalized canonical correlation analysis
    Wang Z.
    Tenenhaus A.
    Wang H.
    Zhao Q.
    Beijing Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of Aeronautics and Astronautics, 2022, 48 (10): : 1960 - 1969
  • [44] Maximal autocorrelation functions in functional data analysis
    Hooker, Giles
    Roberts, Steven
    STATISTICS AND COMPUTING, 2016, 26 (05) : 945 - 950
  • [45] Maximal autocorrelation functions in functional data analysis
    Giles Hooker
    Steven Roberts
    Statistics and Computing, 2016, 26 : 945 - 950
  • [46] Functional data analysis with increasing number of projections
    Fremdt, Stefan
    Horvath, Lajos
    Kokoszka, Piotr
    Steinebach, Josef G.
    JOURNAL OF MULTIVARIATE ANALYSIS, 2014, 124 : 313 - 332
  • [47] Principal component analysis for Hilbertian functional data
    Kim, Dongwoo
    Lee, Young Kyung
    Park, Byeong U.
    COMMUNICATIONS FOR STATISTICAL APPLICATIONS AND METHODS, 2020, 27 (01) : 149 - 161
  • [48] Functional Multiple-Set Canonical Correlation Analysis
    Hwang, Heungsun
    Jung, Kwanghee
    Takane, Yoshio
    Woodward, Todd S.
    PSYCHOMETRIKA, 2012, 77 (01) : 48 - 64
  • [49] Functional linear discriminant analysis for irregularly sampled curves
    James, GM
    Hastie, TJ
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2001, 63 : 533 - 550
  • [50] Analysis of Time of Occurrence of Earthquakes: A Functional Data Approach
    Quintela-del-Rio, A.
    Ferraty, F.
    Vieu, P.
    MATHEMATICAL GEOSCIENCES, 2011, 43 (06) : 695 - 719