Hirzebruch surfaces in a one–parameter family

被引:0
作者
Fiammetta Battaglia
Elisa Prato
Dan Zaffran
机构
[1] Università di Firenze,Dipartimento di Matematica e Informatica “U. Dini”
[2] College of Marin,undefined
来源
Bollettino dell'Unione Matematica Italiana | 2019年 / 12卷
关键词
Hirzebruch Surface; Leaf Space; Symplectic Cuts; Foliated Manifolds; Normal Fan;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce a family of spaces, parametrized by positive real numbers, that includes all of the Hirzebruch surfaces. Each space is viewed from two distinct perspectives. First, as a leaf space of a compact, complex, foliated manifold, following Battaglia and Zaffran (Int Math Res Not 22:11785–11815, 2015). Second, as a symplectic cut of the manifold C×S2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb C\times S^2$$\end{document} in a possibly nonrational direction, following Battaglia and Prato (Int J Math 29:1850063, 2018).
引用
收藏
页码:293 / 305
页数:12
相关论文
共 26 条
  • [1] Battaglia F(2001)Generalized toric varieties for simple nonrational convex polytopes Int. Math. Res. Not. 24 1315-1337
  • [2] Prato E(2018)Nonrational symplectic toric cuts Int. J. Math. 29 19-105
  • [3] Battaglia F(2019)Nonrational symplectic toric reduction J. Geom. Phys. 135 98-11815
  • [4] Prato E(2015)Foliations modeling nonrational simplicial toric varieties Int. Math. Res. Not. 22 11785-1297
  • [5] Battaglia F(2001)Variétés complexes compactes: une généralisation de la construction de Meersseman et de López de Medrano-Verjovsky Ann. Inst. Fourier 51 1259-339
  • [6] Prato E(1988)Hamiltoniens périodiques et images convexes de l’application moment Bull. Soc. Math. France 116 315-86
  • [7] Battaglia F(1951)Uber eine Klasse von einfachzusammenhängenden komplexen Mannigfaltigkeiten Math. Ann. 124 77-250
  • [8] Zaffran D(2014)The definition of a noncommutative toric variety Contemp. Math. 620 223-258
  • [9] Bosio F(1995)Symplectic cuts Math. Res. Lett. 2 247-379
  • [10] Delzant T(1999)On the complex geometry of a class of non Kählerian manifolds Israel J. Math. 110 371-269