共 50 条
Existence of positive weak solutions with a prescribed singular set of semilinear elliptic equations
被引:1
|作者:
Chiun-Chuan Chen
Chang-Shou Lin
机构:
[1] National Taiwan University,Department of Mathematics
来源:
关键词:
35J60;
35J20;
semilinear elliptic equation;
singular solution;
moutain pass lemma;
conformal scalar curvature equation;
D O I:
10.1007/BF02921937
中图分类号:
学科分类号:
摘要:
In this paper, we consider the problem of the existence of non-negative weak solution u of\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$\left\{ \begin{gathered} \Delta u + u^p = 0 in \Omega \hfill \\ u = 0 on \partial \Omega \hfill \\ \end{gathered} \right.$$
\end{document} having a given closed set S as its singular set. We prove that when\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$\frac{n}{{n - 2}}< p< \frac{{n + 2\sqrt {n - 1} }}{{n - 4 + 2\sqrt {n - 1} }}$$
\end{document} and S is a closed subset of Ω, then there are infinite many positive weak solutions with S as their singular set. Applying this method to the conformal scalar curvature equation for n ≥ 9, we construct a weak solution\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$u \in L^{\frac{{n + 2}}{{n - 2}}} \left( {S^n } \right)$$
\end{document} of\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$L_0 u + L^{\frac{{n + 2}}{{n - 2}}} = 0$$
\end{document} such that Sn is the singular set of u where L0 is the conformal Laplacian with respect to the standard metric of Sn. When n = 4 or 6, this kind of solution has been constructed by Pacard.
引用
收藏
页码:221 / 246
页数:25
相关论文