How Fast Does It Diverge? Discrete Hedging Error with Transaction Costs

被引:0
作者
Lan Wu
Shuo Wu
机构
[1] Peking University,School of Mathematical Sciences
来源
Acta Mathematicae Applicatae Sinica, English Series | 2021年 / 37卷
关键词
discrete hedging; transaction costs; hedging error; diverging speed; 91G10;
D O I
暂无
中图分类号
学科分类号
摘要
In the present paper, we focus on the diverging behavior of discrecte hedging error with transaction costs. We added the hedging cost to the error directly. The main idea is to divide the hedging error into two parts: the pure hedging error and transaction cost of rebalance. The later part will be diverged when hedging number n goes to infinity. Firstly we show an upper bound of diverging part, which is O(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\sqrt{n})$$\end{document} of rebalancing number n, then we prove both the upper bound and the lower bound of discrete hedging error with transaction costs are of n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{n}$$\end{document} order, finally we give an approximation of hedging error to determine the coefficient in front of n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{n}$$\end{document}. The main technique in the proof is Itô’s formula, L’Hopital’s rule and three important lemmas in [Yuri, Kabanov, Mher, Safarian. Markets with Transaction Costs. Springer-Verlag, Berlin, Heidelberg, 2009]. The numerical result support our theoretical conclusion.
引用
收藏
页码:548 / 572
页数:24
相关论文
共 13 条
  • [1] Bertsimas D(2000)When is Time Continuous? Journal of Financial Economics 55 173-204
  • [2] Kogan L(2010)Approximate Hedging of Contingent Claims under Transaction Costs for a More General Pay-off Applied Mathematical Finance 17 491-518
  • [3] Lo 0 W(2010)Leland’s approach to option pricing: the evolution of discontinuity Mathematical Finance 11 347-355
  • [4] Denis E(2011)Convergence and optimality of BS-type discrete hedging strategy under stochastic interest rate Science China Mathematics 54 1457-1478
  • [5] Granditz P(1997)On Leland’s strategy of option pricing with transaction costs Finance Stoch. 1 239-250
  • [6] Schachinger W(1985)Option Pricing and Replication with Transactions Costs Journal of Finance 40 1283-1301
  • [7] He JF(2012)Modified Leland’s Strategy For a Constant Transaction Costs Rate Mathematical Finance 22 741-752
  • [8] Wu L(2003)Limit theorem for Leland’s strategy Annuals of Applied Probability 13 1099-1118
  • [9] Kabanov YM(undefined)undefined undefined undefined undefined-undefined
  • [10] Safarian M(undefined)undefined undefined undefined undefined-undefined