Initial boundary value problem for a semilinear parabolic equation with absorption and nonlinear nonlocal boundary condition*

被引:0
作者
Alexander Gladkov
机构
[1] Belarusian State University,Department of Mechanics and Mathematics
来源
Lithuanian Mathematical Journal | 2017年 / 57卷
关键词
semilinear parabolic equation; nonlocal boundary condition; local solution; uniqueness; 35K20; 35K58; 35K61;
D O I
暂无
中图分类号
学科分类号
摘要
We consider an initial boundary value problem for a semilinear parabolic equation with absorption and nonlinear nonlocal Neumann boundary condition. We prove a comparison principle and the existence of a local solution and study the problem of uniqueness and nonuniqueness.
引用
收藏
页码:468 / 478
页数:10
相关论文
共 45 条
[1]  
Bokes P(2007)A uniqueness result for a semilinear parabolic system J. Math. Anal. Appl 331 567-584
[2]  
Cortazar C(1997)On the short-time behaviour of the free boundary of a porous medium equation Duke Math. J. 87 133-149
[3]  
del Pino M(1999)Uniqueness and non-uniqueness for a system of heat equations with nonlinear coupling at the boundary Nonlinear Anal., Theory Methods Appl 37 257-267
[4]  
Elgueta M(2003)Uniqueness and nonuniqueness for the porous medium equation with non linear boundary condition Differ. Integral Equ. 16 1215-1222
[5]  
Cortazar C(1992)Comparison principle for some nonlocal problems Q. Appl. Math. 50 517-522
[6]  
Elgueta M(1993)A semilinear parabolic system in a bounded domain Ann. Mat. Pura Appl. (4) 165 315-336
[7]  
Rossi JD(2014)Global and blow-up solutions for the nonlocal J. Integral Equations Appl. 26 171-196
[8]  
Cortazar C(1968)-Laplacian evolution equation with weighted nonlinear nonlocal boundary condition Commun. Pure Appl. Math. 21 631-652
[9]  
Elgueta M(2011)On the uniqueness and non-uniqueness of solutions of initial value problems for some quasi-linear parabolic equations Appl. Anal. 90 799-809
[10]  
Rossi JD(2011)Existence and blow-up of solutions for a porous medium equation with nonlocal boundary condition Nonlinear Anal., Theory Methods Appl 74 4573-4580