Large deviations for dependent heavy tailed random variables

被引:0
作者
Yu Miao
Tianyu Xue
Ke Wang
Fangfang Zhao
机构
[1] Henan Normal University,College of Mathematics and Information Science
来源
Journal of the Korean Statistical Society | 2012年 / 41卷
关键词
Logarithmic asymptotic behaviors; Large deviations; Heavy tails; -dependent; Negatively associated; Stationary sequence; 60F10;
D O I
暂无
中图分类号
学科分类号
摘要
Let {Xn, n ≥ 1} be a stationary sequence of random variables with heavy tails. In this paper, we study the logarithmic asymptotic behaviors for the distributions of the partial sums \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${S_n} = \sum\nolimits_{i = 1}^n {{X_i}} $$\end{document} under the assumption that {Xn, n ≥ 1} is a sequence of dependent random variables. Our main interest is in the crude estimates P(|Sn| > nx) ≈ n−ax+1 for appropriate values x where a is a specific parameter. Some results in this paper extend the works of Hu and Nyrhinen (2004).
引用
收藏
页码:235 / 245
页数:10
相关论文
共 6 条
  • [1] Gantert N(2000)A note on logarithmic tail asymptotics and mixing Statistics & Probability Letters 49 113-118
  • [2] Hu Y(2004)Large deviations view points for heavy-tailed random walks Journal of Theoretical Probability 17 761-768
  • [3] Nyrhinen H(1983)Negative association of random variables with applications Annals of Statistics 11 286-295
  • [4] Joag-Dev K(2000)A comparison theorem on moment inequalities between negatively associated and independent random variables Journal of Theoretical Probability 13 343-356
  • [5] Proschan F(undefined)undefined undefined undefined undefined-undefined
  • [6] Shao Q M(undefined)undefined undefined undefined undefined-undefined