Completions of Alternating Sign Matrices

被引:0
作者
Richard A. Brualdi
Hwa Kyung Kim
机构
[1] University of Wisconsin,Department of Mathematics
[2] Sangmyung University,Department of Mathematics Education
来源
Graphs and Combinatorics | 2015年 / 31卷
关键词
Alternating sign matrix (ASM); Completion; Bordered-permutation matrix; Bipartite graph; Perfect matching; Biadjacency matrix; Permanent; 05B20; 05C22; 05C50; 15B35; 15B36;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the problem of completing a (0,-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(0,-1)$$\end{document}-matrix to an alternating sign matrix (ASM) by replacing some 0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0$$\end{document}s with -1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-1$$\end{document}s. An algorithm can be given to determine a completion or show that one does not exist. We are concerned primarily with bordered-permutation (0,-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(0,-1)$$\end{document} matrices, defined to be n×n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\times n$$\end{document}(0,-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(0,-1)$$\end{document}-matrices with only 0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0$$\end{document}s in their first and last rows and columns where the -1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-1$$\end{document}s form an (n-2)×(n-2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(n-2)\times (n-2)$$\end{document} permutation matrix. We show that any such matrix can be completed to an ASM and characterize those that have a unique completion.
引用
收藏
页码:507 / 522
页数:15
相关论文
共 5 条
[1]  
Brualdi RA(2013)Patterns of alternating sign matrices Linear Algebra Appl. 438 3967-3990
[2]  
Kiernan KP(2011)Alternating sign matrices and polynomiography Electr. J. Comb. 18 P24-undefined
[3]  
Meyer SA(undefined)undefined undefined undefined undefined-undefined
[4]  
Schroeder MW(undefined)undefined undefined undefined undefined-undefined
[5]  
Kalantari B(undefined)undefined undefined undefined undefined-undefined