Basic reproduction ratios for periodic and time-delayed compartmental models with impulses

被引:0
作者
Zhenguo Bai
Xiao-Qiang Zhao
机构
[1] Xidian University,School of Mathematics and Statistics
[2] Memorial University of Newfoundland,Department of Mathematics and Statistics
来源
Journal of Mathematical Biology | 2020年 / 80卷
关键词
Impulsive models; Time delay; Basic reproduction ratio; Computer virus; Threshold dynamics; 34A37; 92D30; 37N25;
D O I
暂无
中图分类号
学科分类号
摘要
Much work has focused on the basic reproduction ratio R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {R}}_0$$\end{document} for a variety of compartmental population models, but the theory of R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {R}}_0$$\end{document} remains unsolved for periodic and time-delayed impulsive models. In this paper, we develop the theory of R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {R}}_0$$\end{document} for a class of such impulsive models. We first introduce R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {R}}_0$$\end{document} and show that it is a threshold parameter for the stability of the zero solution of an associated linear system. Then we apply this theory to a time-delayed computer virus model with impulse treatment and obtain a threshold result on its global dynamics in terms of R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {R}}_0$$\end{document}. Numerically, it is found that the basic reproduction ratio of the time-averaged delayed impulsive system may overestimate the spread risk of the virus.
引用
收藏
页码:1095 / 1117
页数:22
相关论文
共 37 条
  • [31] Stochastic Dynamical Behaviors for a Time-Delayed Insect Outbreak System with a Periodic Signal Subjected to Multiplicative and Additive Noises
    Wang, Kang-Kang
    Ju, Lin
    Xu, Zu-Run
    Li, Sheng-Hong
    Wu, Jian-Cheng
    FLUCTUATION AND NOISE LETTERS, 2018, 17 (03):
  • [32] Periodic event-triggered consensus of time-delayed multi-agent systems under switching topologies
    Liu, Kaien
    Ji, Zhijian
    PROCEEDINGS OF THE 36TH CHINESE CONTROL CONFERENCE (CCC 2017), 2017, : 8230 - 8235
  • [33] A high-order full-discretization method using Hermite interpolation for periodic time-delayed differential equations
    Yilong Liu
    Achim Fischer
    Peter Eberhard
    Baohai Wu
    Acta Mechanica Sinica, 2015, 31 (03) : 406 - 415
  • [34] A high-order full-discretization method using Hermite interpolation for periodic time-delayed differential equations
    Yilong Liu
    Achim Fischer
    Peter Eberhard
    Baohai Wu
    Acta Mechanica Sinica, 2015, 31 : 406 - 415
  • [35] A high-order full-discretization method using Hermite interpolation for periodic time-delayed differential equations
    Liu, Yilong
    Fischer, Achim
    Eberhard, Peter
    Wu, Baohai
    ACTA MECHANICA SINICA, 2015, 31 (03) : 406 - 415
  • [36] ASYMPTOTIC BEHAVIOR OF THE PRINCIPAL EIGENVALUE AND BASIC REPRODUCTION RATIO FOR TIME-PERIODIC REACTION-DIFFUSION SYSTEMS WITH TIME DELAY
    Lin, Xiandong
    Wang, Qiru
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2022,
  • [37] Complex dynamics of a time periodic nonlocal and time-delayed model of reaction-diffusion equations for modeling CD4+T cells decline
    Wang, Wei
    Ma, Wanbiao
    Feng, Zhaosheng
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 367