Basic reproduction ratios for periodic and time-delayed compartmental models with impulses

被引:0
作者
Zhenguo Bai
Xiao-Qiang Zhao
机构
[1] Xidian University,School of Mathematics and Statistics
[2] Memorial University of Newfoundland,Department of Mathematics and Statistics
来源
Journal of Mathematical Biology | 2020年 / 80卷
关键词
Impulsive models; Time delay; Basic reproduction ratio; Computer virus; Threshold dynamics; 34A37; 92D30; 37N25;
D O I
暂无
中图分类号
学科分类号
摘要
Much work has focused on the basic reproduction ratio R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {R}}_0$$\end{document} for a variety of compartmental population models, but the theory of R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {R}}_0$$\end{document} remains unsolved for periodic and time-delayed impulsive models. In this paper, we develop the theory of R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {R}}_0$$\end{document} for a class of such impulsive models. We first introduce R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {R}}_0$$\end{document} and show that it is a threshold parameter for the stability of the zero solution of an associated linear system. Then we apply this theory to a time-delayed computer virus model with impulse treatment and obtain a threshold result on its global dynamics in terms of R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {R}}_0$$\end{document}. Numerically, it is found that the basic reproduction ratio of the time-averaged delayed impulsive system may overestimate the spread risk of the virus.
引用
收藏
页码:1095 / 1117
页数:22
相关论文
共 37 条
  • [1] Basic reproduction ratios for periodic and time-delayed compartmental models with impulses
    Bai, Zhenguo
    Zhao, Xiao-Qiang
    JOURNAL OF MATHEMATICAL BIOLOGY, 2020, 80 (04) : 1095 - 1117
  • [2] Basic reproduction ratios for almost periodic compartmental models with time delay
    Qiang, Lizhong
    Wang, Bin-Guo
    Zhao, Xiao-Qiang
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 269 (05) : 4440 - 4476
  • [3] Basic Reproduction Ratios for Periodic Compartmental Models with Time Delay
    Zhao, Xiao-Qiang
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2017, 29 (01) : 67 - 82
  • [4] Basic Reproduction Ratios for Periodic Compartmental Models with Time Delay
    Xiao-Qiang Zhao
    Journal of Dynamics and Differential Equations, 2017, 29 : 67 - 82
  • [5] Basic Reproduction Ratios for Almost Periodic Compartmental Epidemic Models
    Wang, Bin-Guo
    Zhao, Xiao-Qiang
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2013, 25 (02) : 535 - 562
  • [6] Basic Reproduction Ratios for Almost Periodic Compartmental Epidemic Models
    Bin-Guo Wang
    Xiao-Qiang Zhao
    Journal of Dynamics and Differential Equations, 2013, 25 : 535 - 562
  • [7] BASIC REPRODUCTION RATIOS FOR TIME-PERIODIC HOMOGENEOUS EVOLUTION SYSTEMS
    Wang, Feng-Bin
    Zhang, Lei
    Zhao, Xiao-Qiang
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2023, 83 (05) : 1806 - 1831
  • [8] On threshold dynamics for periodic and time-delayed impulsive systems and application to a periodic disease model
    Huo, Hai-Feng
    Wu, Fan
    Xiang, Hong
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2022, 19 (01) : 836 - 854
  • [9] Basic reproduction ratios for almost periodic reaction-diffusion epidemic models
    Wang, Bin-Guo
    Xin, Ming-Zhen
    Huang, Shunxiang
    Li, Jing
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 352 : 189 - 220
  • [10] REMARKS ON BASIC REPRODUCTION RATIOS FOR PERIODIC ABSTRACT FUNCTIONAL DIFFERENTIAL EQUATIONS
    Yang, Tianhui
    Zhang, Lei
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2019, 24 (12): : 6771 - 6782