Multivariable Wilson polynomials and degenerate Hecke algebras

被引:0
作者
Wolter Groenevelt
机构
[1] Technische Universiteit Delft,Delft Institute of Applied Mathematics
来源
Selecta Mathematica | 2009年 / 15卷
关键词
Primary 33C52; 33C80; Secondary 20C08;
D O I
暂无
中图分类号
学科分类号
摘要
We study a rational version of the double affine Hecke algebra associated to the nonreduced affine root system of type \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(C^\vee_{n}, C_{n})}$$\end{document} . A certain representation in terms of difference-reflection operators naturally leads to the definition of nonsymmetric versions of the multivariable Wilson polynomials. Using the degenerate Hecke algebra we derive several properties, such as orthogonality relations and quadratic norms, for the nonsymmetric and symmetric multivariable Wilson polynomials.
引用
收藏
相关论文
共 30 条
[1]  
Cherednik I.(1997)Inverse Harish-Chandra transform and difference operators Int. Math. Res. Not. 1997 733-750
[2]  
Etingof P.(2006)Generalized double affine Hecke algebras of higher rank J. Reine Angew. Math. 600 177-201
[3]  
Gan W.L.(2002)Symplectic reflection algebras, Calogero-Moser space, and deformed Harish-Chandra homomorphism Invent. Math. 147 243-348
[4]  
Oblomkov A.(2005)New deformations of group algebras of Coxeter groups Int. Math. Res. Not. 2005 635-646
[5]  
Etingof P.(2008)New deformations of group algebras of Coxeter groups, II Geom. Funct. Anal. 17 1851-1871
[6]  
Ginzburg V.(2005)Deformed preprojective algebras and symplectic reflection algebras for wreath products J. Algebra 283 350-363
[7]  
Etingof P.(2007)Fourier transforms related to a root system of rank 1 Transform. Groups 12 77-116
[8]  
Rains E.(1990)A generalization of Selberg’s beta integral Bull. Am. Math. Soc. (N.S.) 22 97-105
[9]  
Etingof P.(1987)Root systems and hypergeometric functions, II Compositio Math. 64 353-373
[10]  
Rains E.(1992)Askey–Wilson polynomials for root systems of type Contemp. Math. 138 189-204