Universal geometric cluster algebras

被引:1
作者
Nathan Reading
机构
[1] North Carolina State University,
来源
Mathematische Zeitschrift | 2014年 / 277卷
关键词
Primary 13F60; 52B99; Secondary 05E15; 20F55;
D O I
暂无
中图分类号
学科分类号
摘要
We consider, for each exchange matrix B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B$$\end{document}, a category of geometric cluster algebras over B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B$$\end{document} and coefficient specializations between the cluster algebras. The category also depends on an underlying ring R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R$$\end{document}, usually Z,Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z},\,\mathbb {Q}$$\end{document}, or R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}$$\end{document}. We broaden the definition of geometric cluster algebras slightly over the usual definition and adjust the definition of coefficient specializations accordingly. If the broader category admits a universal object, the universal object is called the cluster algebra over B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B$$\end{document} with universal geometric coefficients, or the universal geometric cluster algebra over B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B$$\end{document}. Constructing universal geometric coefficients is equivalent to finding an R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R$$\end{document}-basis for B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B$$\end{document} (a “mutation-linear” analog of the usual linear-algebraic notion of a basis). Polyhedral geometry plays a key role, through the mutation fan FB\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {F}}_B$$\end{document}, which we suspect to be an important object beyond its role in constructing universal geometric coefficients. We make the connection between FB\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {F}}_B$$\end{document} and g\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf{g}$$\end{document}-vectors. We construct universal geometric coefficients in rank 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2$$\end{document} and in finite type and discuss the construction in affine type.
引用
收藏
页码:499 / 547
页数:48
相关论文
共 26 条
[1]  
Derksen H(2010)Quivers with potentials and their representations II: applications to cluster algebras J. Am. Math. Soc. 23 749-790
[2]  
Weyman J(2009)Cluster ensembles, quantization and the dilogarithm Ann. Sci. Éc. Norm. Supér. (4) 42 865-930
[3]  
Zelevinsky A(2008)Cluster algebras and triangulated surfaces. I. Cluster complexes Acta Math. 201 83-146
[4]  
Fock V.V.(2002)Cluster algebras. I. Foundations J. Am. Math. Soc. 15 497-529
[5]  
Goncharov A.B.(2003)Cluster algebras II: finite type classification Invent. Math. 154 63-121
[6]  
Fomin S(2007)Cluster algebras IV: coefficients Compos. Math. 143 112-164
[7]  
Shapiro M(1972)Affine root systems and Dedekind’s Invent. Math. 15 91-143
[8]  
Thurston D(2011)-function Compos. Math. 147 1921-1954
[9]  
Fomin S(2006)Cluster algebras via cluster categories with infinite-dimensional morphism spaces Adv. Math. 205 313-353
[10]  
Zelevinsky A(2007)Cambrian lattices Trans. Am. Math. Soc. 359 5931-5958