A Renormalisation Group Method. II. Approximation by Local Polynomials

被引:0
|
作者
David C. Brydges
Gordon Slade
机构
[1] University of British Columbia,Department of Mathematics
来源
Journal of Statistical Physics | 2015年 / 159卷
关键词
Renormalisation group; Polynomial approximation; Lattice Taylor polynomials; 82B28; 41A10;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is the second in a series devoted to the development of a rigorous renormalisation group method for lattice field theories involving boson fields, fermion fields, or both. The method is set within a normed algebra N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {N}$$\end{document} of functionals of the fields. In this paper, we develop a general method—localisation—to approximate an element of N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {N}$$\end{document} by a local polynomial in the fields. From the point of view of the renormalisation group, the construction of the local polynomial corresponding to F∈N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F \in \mathcal {N}$$\end{document} amounts to the extraction of the relevant and marginal parts of F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F$$\end{document}. We prove estimates relating F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F$$\end{document} and its corresponding local polynomial, in terms of the Tϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_\phi $$\end{document} semi-norm introduced in part I of the series.
引用
收藏
页码:461 / 491
页数:30
相关论文
共 13 条
  • [1] A Renormalisation Group Method. II. Approximation by Local Polynomials
    Brydges, David C.
    Slade, Gordon
    JOURNAL OF STATISTICAL PHYSICS, 2015, 159 (03) : 461 - 491
  • [2] A Renormalisation Group Method. V. A Single Renormalisation Group Step
    Brydges, David C.
    Slade, Gordon
    JOURNAL OF STATISTICAL PHYSICS, 2015, 159 (03) : 589 - 667
  • [3] A Renormalisation Group Method. V. A Single Renormalisation Group Step
    David C. Brydges
    Gordon Slade
    Journal of Statistical Physics, 2015, 159 : 589 - 667
  • [4] A Renormalisation Group Method. III. Perturbative Analysis
    Roland Bauerschmidt
    David C. Brydges
    Gordon Slade
    Journal of Statistical Physics, 2015, 159 : 492 - 529
  • [5] A Renormalisation Group Method. IV. Stability Analysis
    David C. Brydges
    Gordon Slade
    Journal of Statistical Physics, 2015, 159 : 530 - 588
  • [6] A Renormalisation Group Method. III. Perturbative Analysis
    Bauerschmidt, Roland
    Brydges, David C.
    Slade, Gordon
    JOURNAL OF STATISTICAL PHYSICS, 2015, 159 (03) : 492 - 529
  • [7] A Renormalisation Group Method. IV. Stability Analysis
    Brydges, David C.
    Slade, Gordon
    JOURNAL OF STATISTICAL PHYSICS, 2015, 159 (03) : 530 - 588
  • [8] A Renormalisation Group Method. I. Gaussian Integration and Normed Algebras
    Brydges, David C.
    Slade, Gordon
    JOURNAL OF STATISTICAL PHYSICS, 2015, 159 (03) : 421 - 460
  • [9] A Renormalisation Group Method. I. Gaussian Integration and Normed Algebras
    David C. Brydges
    Gordon Slade
    Journal of Statistical Physics, 2015, 159 : 421 - 460
  • [10] A numerical renormalisation group method for the analysis of critical spreading activity in spiking neural networks
    Thomas Greg Corcoran
    Andrew Phillipedes
    Thomas Nowotny
    BMC Neuroscience, 14 (Suppl 1)