Coprime values of polynomials in several variables

被引:0
作者
Arnaud Bodin
Pierre Dèbes
机构
[1] Université de Lille,Laboratoire Paul Painlevé
[2] CNRS,undefined
来源
Israel Journal of Mathematics | 2023年 / 257卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Given two polynomials P(x), Q(x) in one or more variables and with integer coefficients, how does the property that they are coprime relate to their values P(n), Q(n) at integer points n being coprime? We show that the set of all gcd (P(n), Q(n)) is stable under gcd and under lcm. A notable consequence is a result of Schinzel: if in addition P and Q have no fixed prime divisor (i.e., no prime dividing all values P(n), Q(n)), then P and Q assume coprime values at “many” integer points. Conversely we show that if “sufficiently many” integer points yield values that are coprime (or of small gcd) then the original polynomials must be coprime. Another noteworthy consequence of this paper is a version “over the ring” of Hubert’s irreducibility theorem.
引用
收藏
页码:26 / 55
页数:29
相关论文
共 18 条
[1]  
Bodin A(2022)The Hilbert–Schinzel specialization property Journal für die Reine und Angewandte Mathematik 785 55-79
[2]  
Dèbes P(2020)Prime and coprime values of polynomials L’Enseignement Mathématique 66 173-186
[3]  
König J(2020)The Schinzel hypothesis for polynomials Transactions of the American Mathematical Society 373 8339-8364
[4]  
Najib S(1991)An infinité version of the Chinese remainder theorem Commentarii Mathematici Universitatis Sancti Pauli 40 53-59
[5]  
Bodin A(2017)On the greatest common divisor of the value of two polynomials American Mathematical Monthly 124 446-450
[6]  
Dèbes P(2015)On the number of points of algebraic sets over finite fields Journal of Pure and Applied Algebra 219 5117-5136
[7]  
Najib S(2003)Squarefree values of multivariable polynomials Duke Mathematical Journal 118 353-373
[8]  
Bodin A(2002)A property of polynomials with an application to Siegel’s lemma Monatshefte für Mathematik 137 239-251
[9]  
Dèbes P(2014)Algebraic combinatorial geometry: the polynomial method in arithmetic combinatorics, incidence combinatorics, and number theory EMS Surveys in Mathematical Sciences 1 1-46
[10]  
Najib S(undefined)undefined undefined undefined undefined-undefined