On Strongly Gauduchon Metrics of Compact Complex Manifolds

被引:0
|
作者
Jian Xiao
机构
[1] Fudan University,Institute of Mathematics
来源
关键词
Strongly Gauduchon metrics; Positive currents; Positive cones; Proper modification; Fibration; 32U40; 32Q99; 53C55;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study strongly Gauduchon metrics on compact complex manifolds. We study the cohomology cones SG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {SG}$$\end{document} in the de Rham cohomology groups generated by all strongly Gauduchon metrics and its direct images under proper modifications. We also study the moduli of strongly Gauduchon manifolds. We prove an existence result of strongly Gauduchon metrics on a compact complex manifold which is fibered over a compact complex curve. In particular, if a compact complex manifold X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {X}$$\end{document} has a topologically essential fibration over a compact complex curve, and if the generic fibers satisfy the ∂∂¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial \bar{\partial }$$\end{document}-lemma, then X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {X}$$\end{document} admits strongly Gauduchon metrics.
引用
收藏
页码:2011 / 2027
页数:16
相关论文
共 50 条