Towards unified on-road object detection and depth estimation from a single image

被引:0
|
作者
Guofei Lian
Yan Wang
Huabiao Qin
Guancheng Chen
机构
[1] South China University of Technology,School of Electronic and Information Engineering
来源
International Journal of Machine Learning and Cybernetics | 2022年 / 13卷
关键词
On-road object detection; Depth estimation; Monocular image; Convolution neural network; YOLOv3;
D O I
暂无
中图分类号
学科分类号
摘要
On-road object detection based on convolutional neural network (CNN) is an important problem in the field of automatic driving. However, traditional 2D object detection aims to accomplish object classification and location in image space, lacking the ability to acquire the depth information. Besides, it is inefficient to cascade the object detection and monocular depth estimation network for realizing 2.5D object detection. To address this problem, we propose a unified multi-task learning mechanism of object detection and depth estimation. Firstly, we propose an innovative loss function, namely projective consistency loss, which uses the perspective projection principle to model the transformation relationship between the target size and the depth value. Therefore, the object detection task and the depth estimation task can be mutually constrained. Then, we propose a global multi-scale feature extracting scheme by combining the Global Context (GC) and Atrous Spatial Pyramid Pooling (ASPP) block in an appropriate way, which can promote effective feature learning and collaborative learning between object detection and depth estimation. Comprehensive experiments conducted on KITTI and Cityscapes dataset show that our approach achieves high mAP and low distance estimation error, outperforming other state-of-the-art methods.
引用
收藏
页码:1231 / 1241
页数:10
相关论文
共 50 条
  • [1] Towards unified on-road object detection and depth estimation from a single image
    Lian, Guofei
    Wang, Yan
    Qin, Huabiao
    Chen, Guancheng
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2022, 13 (05) : 1231 - 1241
  • [2] Joint Object Detection and Depth Estimation in Multiplexed Image
    Zhou, Changxin
    Liu, Yazhou
    INTELLIGENCE SCIENCE AND BIG DATA ENGINEERING: VISUAL DATA ENGINEERING, PT I, 2019, 11935 : 312 - 323
  • [3] Joint Object Detection and Depth Estimation in Multiplexed Image
    Zhou, Changxin
    Liu, Yazhou
    Sun, Quansen
    Lasang, Pongsak
    IEEE ACCESS, 2019, 7 : 123107 - 123115
  • [4] Object Depth Estimation from a Single Image using Fully Convolutional Neural Network
    Afifi, Ahmed J.
    Hellwich, Olaf
    2016 INTERNATIONAL CONFERENCE ON DIGITAL IMAGE COMPUTING: TECHNIQUES AND APPLICATIONS (DICTA), 2016, : 605 - 611
  • [5] SINGLE IMAGE DEPTH ESTIMATION FROM IMAGE DESCRIPTORS
    Lin, Yu-Hsun
    Cheng, Wen-Huang
    Miao, Hsin
    Ku, Tsung-Hao
    Hsieh, Yung-Huan
    2012 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2012, : 809 - 812
  • [6] EFFICIENT DEPTH ESTIMATION FROM SINGLE IMAGE
    Zhou, Wei
    Dai, Yuchao
    He, Renjie
    2014 IEEE CHINA SUMMIT & INTERNATIONAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (CHINASIP), 2014, : 296 - 300
  • [7] FAST DEPTH ESTIMATION FROM SINGLE IMAGE USING STRUCTURED FOREST
    Fang, Shuai
    Jin, Ren
    Cao, Yang
    2016 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2016, : 4022 - 4026
  • [8] DEPTH ESTIMATION FROM SINGLE IMAGE AND SEMANTIC PRIOR
    Hambarde, Praful
    Dudhane, Akshay
    Patil, Prashant W.
    Murala, Subrahmanyam
    Dhall, Abhinav
    2020 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2020, : 1441 - 1445
  • [9] ORO-YOLO: An Improved YOLO Algorithm for On-Road Object Detection
    Lian, Zheng
    Nie, Yiming
    Kong, Fanjie
    Dai, Bin
    PROCEEDINGS OF 2022 INTERNATIONAL CONFERENCE ON AUTONOMOUS UNMANNED SYSTEMS, ICAUS 2022, 2023, 1010 : 3653 - 3664
  • [10] Object Detection and Depth Estimation of Real World Objects using Single Camera
    Liaquat, Sana
    Khan, Umar S.
    Ata-ur-Rehman
    2015 FOURTH INTERNATIONAL CONFERENCE ON AEROSPACE SCIENCE AND ENGINEERING (ICASE), 2016,