On Alternative Geometries, Arithmetics, and Logics; a Tribute to Łukasiewicz

被引:14
作者
Graham Priest
机构
[1] University of Melbourne,Department of Philosophy
关键词
Łukasiewicz; revisability; inconsistent arithmetics; Traditional logic; paraconsistency; Quine;
D O I
10.1023/A:1025123418085
中图分类号
学科分类号
摘要
The paper discusses the similarity between geometry, arithmetic, and logic, specifically with respect to the question of whether applied theories of each may be revised. It argues that they can - even when the revised logic is a paraconsistent one, or the revised arithmetic is an inconsistent one. Indeed, in the case of logic, it argues that logic is not only revisable, but, during its history, it has been revised. The paper also discusses Quine's well known argument against the possibility of “logical deviancy”.
引用
收藏
页码:441 / 468
页数:27
相关论文
共 18 条
[1]  
Borkowski L.(1958)The Logical Works of J. Łukasiewicz Studia Logica 8 7-56
[2]  
SŁupecki J.(1959)Arithmetic and Reality Australasian Journal of Philosophy 37 92-107
[3]  
CastaÑeda H.-N.(1995)Priest's Paraconsistent Arithmetic Mind 104 567-75
[4]  
Denyer N.(1940)Mathematics and the World Australasian Journal of Philosophy 18 97-116
[5]  
Gasking D. A. T.(2000)The Inconsistency of Aristotelian Logic? Australasian Journal of Philosophy 78 434-7
[6]  
Goddard L.(1958)Jan Łukasiewicz's Works on the History of Logic Studia Logica 8 57-62
[7]  
KotarbiŃski T.(1930)Philosophische Bemargungen zu Mehrwertigen des Aussagenkalküls Comptes Rendus des Séances de la Societé des Sciences et des Lettres de Varsovie 23 51-77
[8]  
Łukasiewicz J.(1979)Two Dogmas of Quineanism Philosophical Quarterly 29 289-301
[9]  
Priest G.(1994)Is Arithmetic Consistent? Mind 103 337-49
[10]  
Priest G.(1995)Etchemendy and the Concept of Logical Validity Canadian Journal of Philosophy 25 283-92