Dense 3D displacement vector fields for point cloud-based landslide monitoring

被引:0
|
作者
Zan Gojcic
Lorenz Schmid
Andreas Wieser
机构
[1] ETH Zurich,
来源
Landslides | 2021年 / 18卷
关键词
Deformation analysis; Point clouds; Deep learning; 3D displacement vector field;
D O I
暂无
中图分类号
学科分类号
摘要
We propose a novel fully automated deformation analysis pipeline capable of estimating real 3D displacement vectors from point cloud data. Different from the traditional methods that establish displacements based on the proximity in the Euclidean space, our approach estimates dense 3D displacement vector fields by searching for corresponding points across the epochs in the space of 3D local feature descriptors. Due to this formulation, our method is also sensitive to motion and deformations that occur parallel to the underlying surface. By enabling efficient parallel processing, the proposed method can be applied to point clouds of arbitrary size. We compare our approach to the traditional methods on point cloud data of two landslides and show that while the traditional methods often underestimate the displacements, our method correctly estimates full 3D displacement vectors.
引用
收藏
页码:3821 / 3832
页数:11
相关论文
共 50 条
  • [1] Dense 3D displacement vector fields for point cloud-based landslide monitoring
    Gojcic, Zan
    Schmid, Lorenz
    Wieser, Andreas
    LANDSLIDES, 2021, 18 (12) : 3821 - 3832
  • [2] 3D point cloud-based place recognition: a survey
    Luo, Kan
    Yu, Hongshan
    Chen, Xieyuanli
    Yang, Zhengeng
    Wang, Jingwen
    Cheng, Panfei
    Mian, Ajmal
    ARTIFICIAL INTELLIGENCE REVIEW, 2024, 57 (04)
  • [3] Point cloud-based 3D round hole detection
    Yang, Hao
    Li, Haoyu
    Yang, Yunjie
    Zhang, Yuegang
    Fang, Yu
    MEASUREMENT & CONTROL, 2024,
  • [4] 3D point cloud-based place recognition: a survey
    Kan Luo
    Hongshan Yu
    Xieyuanli Chen
    Zhengeng Yang
    Jingwen Wang
    Panfei Cheng
    Ajmal Mian
    Artificial Intelligence Review, 57
  • [5] A Review: Point Cloud-Based 3D Human Joints Estimation
    Xu, Tianxu
    An, Dong
    Jia, Yuetong
    Yue, Yang
    SENSORS, 2021, 21 (05) : 1 - 32
  • [6] 3D Laser Point Cloud-based Navigation in Complex Environment
    Yang Yi
    Fu Mengyin
    Wang Wei
    Yang Xin
    Zhu Hao
    PROCEEDINGS OF THE 29TH CHINESE CONTROL CONFERENCE, 2010, : 3798 - 3803
  • [7] 3DVPS: A 3D Point Cloud-Based Visual Positioning System
    Chen, Yu-Hsiu
    Chen, Yen-Yu
    Chen, Ming-Chien
    Huang, Chih-Wei
    2020 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS (ICCE), 2020, : 360 - 363
  • [8] Point Cloud-Based Automatic Assessment of 3D Computer Animation Courseworks
    Paravati, Gianluca
    Lamberti, Fabrizio
    Gatteschi, Valentina
    Demartini, Claudio
    Montuschi, Paolo
    IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, 2017, 10 (04): : 532 - 543
  • [9] Evaluation of 3D point cloud-based models for the prediction of grassland biomass
    Wijesingha, Jayan
    Moeckel, Thomas
    Hensgen, Frank
    Wachendorf, Michael
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2019, 78 : 352 - 359
  • [10] AI-Driven 3D Point Cloud-Based Highway Infrastructure Monitoring System Using UAV
    Yajima, Yosuke
    Kahoush, Mark
    Kim, Seongyong
    Chen, Jingdao
    Park, Jisoo
    Kangisser, Steven
    Irizarry, Javier
    Cho, Yong K.
    COMPUTING IN CIVIL ENGINEERING 2021, 2022, : 894 - 901