Intraoperative Detection of Surgical Gauze Using Deep Convolutional Neural Network

被引:0
作者
Shuo-Lun Lai
Chi-Sheng Chen
Been-Ren Lin
Ruey-Feng Chang
机构
[1] National Taiwan University,Graduate Institute of Biomedical Electronics and Bioinformatics
[2] National Taiwan University Hospital and National Taiwan University College of Medicine,Division of Colorectal Surgery, Department of Surgery
[3] National Taiwan University,Department of Computer Science and Information Engineering
来源
Annals of Biomedical Engineering | 2023年 / 51卷
关键词
Deep learning; Detection; Convolutional neural network; You Only Look Once (YOLO); Gauze; Laparoscopic surgery;
D O I
暂无
中图分类号
学科分类号
摘要
During laparoscopic surgery, surgical gauze is usually inserted into the body cavity to help achieve hemostasis. Retention of surgical gauze in the body cavity may necessitate reoperation and increase surgical risk. Using deep learning technology, this study aimed to propose a neural network model for gauze detection from the surgical video to record the presence of the gauze. The model was trained by the training group using YOLO (You Only Look Once)v5x6, then applied to the testing group. Positive predicted value (PPV), sensitivity, and mean average precision (mAP) were calculated. Furthermore, a timeline of gauze presence in the video was drawn by the model as well as human annotation to evaluate the accuracy. After the model was well-trained, the PPV, sensitivity, and mAP in the testing group were 0.920, 0.828, and 0.881, respectively. The inference time was 11.3 ms per image. The average accuracy of the model adding a marking and filtering process was 0.899. In conclusion, surgical gauze can be successfully detected using deep learning in the surgical video. Our model provided a fast detection of surgical gauze, allowing further real-time gauze tracing in laparoscopic surgery that may help surgeons recall the location of the missing gauze.
引用
收藏
页码:352 / 362
页数:10
相关论文
共 50 条
  • [21] Edge Detection Using Convolutional Neural Network
    Wang, Ruohui
    ADVANCES IN NEURAL NETWORKS - ISNN 2016, 2016, 9719 : 12 - 20
  • [22] Landslide Susceptibility Mapping Using Deep Neural Network and Convolutional Neural Network
    Gong, Sung-Hyun
    Baek, Won-Kyung
    Jung, Hyung-Sup
    KOREAN JOURNAL OF REMOTE SENSING, 2022, 38 (06) : 1723 - 1735
  • [23] Deep Convolutional Neural Network for Fog Detection
    Zhang, Jun
    Lu, Hui
    Xia, Yi
    Han, Ting-Ting
    Miao, Kai-Chao
    Yao, Ye-Qing
    Liu, Cheng-Xiao
    Zhou, Jian-Ping
    Chen, Peng
    Wang, Bing
    INTELLIGENT COMPUTING THEORIES AND APPLICATION, PT II, 2018, 10955 : 1 - 10
  • [24] Obstacle Detection with Deep Convolutional Neural Network
    Yu, Hong
    Hong, Ruxia
    Huang, XiaoLei
    Wang, Zhengyou
    2013 SIXTH INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DESIGN (ISCID), VOL 1, 2013, : 265 - 268
  • [25] Detection of Plant Leaf Disease Using a Lightweight Parallel Deep Convolutional Neural Network
    Deshpande, Rashmi
    Patidar, Hemant
    JORDAN JOURNAL OF ELECTRICAL ENGINEERING, 2023, 9 (04): : 537 - 551
  • [26] Residential Appliance Detection Using Attention-based Deep Convolutional Neural Network
    Deng, Chunyu
    Wu, Kehe
    Wang, Binbin
    CSEE JOURNAL OF POWER AND ENERGY SYSTEMS, 2022, 8 (02): : 621 - 633
  • [27] Detection and classification of mandibular fracture on CT scan using deep convolutional neural network
    Wang, Xuebing
    Xu, Zineng
    Tong, Yanhang
    Xia, Long
    Jie, Bimeng
    Ding, Peng
    Bai, Hailong
    Zhang, Yi
    He, Yang
    CLINICAL ORAL INVESTIGATIONS, 2022, 26 (06) : 4593 - 4601
  • [28] Detection and classification of mandibular fracture on CT scan using deep convolutional neural network
    Xuebing Wang
    Zineng Xu
    Yanhang Tong
    Long Xia
    Bimeng Jie
    Peng Ding
    Hailong Bai
    Yi Zhang
    Yang He
    Clinical Oral Investigations, 2022, 26 : 4593 - 4601
  • [29] Deep Learning Implementation using Convolutional Neural Network in Mangosteen Surface Defect Detection
    Azizah, Laila Ma'rifatul
    Umayah, Sitti Fadillah
    Riyadi, Slamet
    Damarjati, Cahya
    Utama, Nafi Ananda
    2017 7TH IEEE INTERNATIONAL CONFERENCE ON CONTROL SYSTEM, COMPUTING AND ENGINEERING (ICCSCE), 2017, : 242 - 246
  • [30] Intrusion Detection in IoT Systems Based on Deep Learning Using Convolutional Neural Network
    Pham Van Huong
    Le Duc Thuan
    Le Thi Hong Van
    Dang Viet Hung
    PROCEEDINGS OF 2019 6TH NATIONAL FOUNDATION FOR SCIENCE AND TECHNOLOGY DEVELOPMENT (NAFOSTED) CONFERENCE ON INFORMATION AND COMPUTER SCIENCE (NICS), 2019, : 448 - 453