Intraoperative Detection of Surgical Gauze Using Deep Convolutional Neural Network

被引:0
作者
Shuo-Lun Lai
Chi-Sheng Chen
Been-Ren Lin
Ruey-Feng Chang
机构
[1] National Taiwan University,Graduate Institute of Biomedical Electronics and Bioinformatics
[2] National Taiwan University Hospital and National Taiwan University College of Medicine,Division of Colorectal Surgery, Department of Surgery
[3] National Taiwan University,Department of Computer Science and Information Engineering
来源
Annals of Biomedical Engineering | 2023年 / 51卷
关键词
Deep learning; Detection; Convolutional neural network; You Only Look Once (YOLO); Gauze; Laparoscopic surgery;
D O I
暂无
中图分类号
学科分类号
摘要
During laparoscopic surgery, surgical gauze is usually inserted into the body cavity to help achieve hemostasis. Retention of surgical gauze in the body cavity may necessitate reoperation and increase surgical risk. Using deep learning technology, this study aimed to propose a neural network model for gauze detection from the surgical video to record the presence of the gauze. The model was trained by the training group using YOLO (You Only Look Once)v5x6, then applied to the testing group. Positive predicted value (PPV), sensitivity, and mean average precision (mAP) were calculated. Furthermore, a timeline of gauze presence in the video was drawn by the model as well as human annotation to evaluate the accuracy. After the model was well-trained, the PPV, sensitivity, and mAP in the testing group were 0.920, 0.828, and 0.881, respectively. The inference time was 11.3 ms per image. The average accuracy of the model adding a marking and filtering process was 0.899. In conclusion, surgical gauze can be successfully detected using deep learning in the surgical video. Our model provided a fast detection of surgical gauze, allowing further real-time gauze tracing in laparoscopic surgery that may help surgeons recall the location of the missing gauze.
引用
收藏
页码:352 / 362
页数:10
相关论文
共 50 条
  • [11] Autonomous concrete crack detection using deep fully convolutional neural network
    Cao Vu Dung
    Le Duc Anh
    AUTOMATION IN CONSTRUCTION, 2019, 99 : 52 - 58
  • [12] ROAD CRACK DETECTION USING DEEP CONVOLUTIONAL NEURAL NETWORK
    Zhang, Lei
    Yang, Fan
    Zhang, Yimin Daniel
    Zhu, Ying Julie
    2016 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2016, : 3708 - 3712
  • [13] Breast Cancer Detection using Deep Convolutional Neural Network
    Mechria, Hana
    Gouider, Mohamed Salah
    Hassine, Khaled
    PROCEEDINGS OF THE 11TH INTERNATIONAL CONFERENCE ON AGENTS AND ARTIFICIAL INTELLIGENCE (ICAART), VOL 2, 2019, : 655 - 660
  • [14] Detection of pneumonia using convolutional neural networks and deep learning
    Szepesi, Patrik
    Szilagyi, Laszlo
    BIOCYBERNETICS AND BIOMEDICAL ENGINEERING, 2022, 42 (03) : 1012 - 1022
  • [15] Deep Features using Convolutional Neural Network for Early Stage Cancer Detection
    Pratiher, Sawon
    Bhattacharya, Shubhobrata
    Mukhopadhyay, Sabyasachi
    Ghosh, Nirmalya
    Pasupuleti, Gautham
    Panigrahi, Prasanta K.
    OPTICS, PHOTONICS, AND DIGITAL TECHNOLOGIES FOR IMAGING APPLICATIONS V, 2018, 10679
  • [16] A Deep Convolutional Neural Network for Food Detection and Recognition
    Subhi, Mohammed A.
    Ali, Sawal Md.
    2018 IEEE-EMBS CONFERENCE ON BIOMEDICAL ENGINEERING AND SCIENCES (IECBES), 2018, : 284 - 287
  • [17] Transmission line detection using deep convolutional neural network
    Dong, Jingjing
    Chen, Wei
    Xu, Chen
    PROCEEDINGS OF 2019 IEEE 8TH JOINT INTERNATIONAL INFORMATION TECHNOLOGY AND ARTIFICIAL INTELLIGENCE CONFERENCE (ITAIC 2019), 2019, : 977 - 980
  • [18] Detection of Cyberbullying Using Deep Neural Network
    Banerjee, Vijay
    Telavane, Jui
    Gaikwad, Pooja
    Vartak, Pallavi
    2019 5TH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTING & COMMUNICATION SYSTEMS (ICACCS), 2019, : 604 - 607
  • [19] Automated detection of focal cortical dysplasia using a deep convolutional neural network
    Wang, Huiquan
    Ahmed, S. Nizam
    Mandal, Mrinal
    COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2020, 79
  • [20] Brain Stroke Detection Using Convolutional Neural Network and Deep Learning Models
    Gaidhani, Bhagyashree Rajendra
    Rajamenakshi, R.
    Sonavane, Samadhan
    2019 2ND INTERNATIONAL CONFERENCE ON INTELLIGENT COMMUNICATION AND COMPUTATIONAL TECHNIQUES (ICCT), 2019, : 242 - 249