2D Ising Field Theory in a magnetic field: the Yang-Lee singularity

被引:0
作者
Hao-Lan Xu
Alexander Zamolodchikov
机构
[1] State University of New York,C.N. Yang Institute for Theoretical Physics
来源
Journal of High Energy Physics | / 2022卷
关键词
Field Theories in Lower Dimensions; Integrable Field Theories; Renormalization Group; Scale and Conformal Symmetries;
D O I
暂无
中图分类号
学科分类号
摘要
We study Ising Field Theory (the scaling limit of Ising model near the Curie critical point) in pure imaginary external magnetic field. We put particular emphasis on the detailed structure of the Yang-Lee edge singularity. While the leading singular behavior is controlled by the Yang-Lee fixed point (= minimal CFT M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{M} $$\end{document}2/5), the fine structure of the subleading singular terms is determined by the effective action which involves a tower of irrelevant operators. We use numerical data obtained through the “Truncated Free Fermion Space Approach” to estimate the couplings associated with two least irrelevant operators. One is the operator TT¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ T\overline{T} $$\end{document}, and we use the universal properties of the TT¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ T\overline{T} $$\end{document} deformation to fix the contributions of higher orders in the corresponding coupling parameter α. Another irrelevant operator we deal with is the descendant L_4L¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \overline{L} $$\end{document}_4ϕ of the relevant primary ϕ in M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{M} $$\end{document}2/5. The significance of this operator is that it is the lowest dimension operator which breaks integrability of the effective theory. We also establish analytic properties of the particle mass M (= inverse correlation length) as the function of complex magnetic field.
引用
收藏
相关论文
共 27 条
[1]  
Fonseca P(2003)undefined J. Statist. Phys. 110 527-undefined
[2]  
Zamolodchikov A(1974)undefined Phys. Rept. 12 75-undefined
[3]  
Wilson KG(2017)undefined Nucl. Phys. B 915 363-undefined
[4]  
Kogut JB(1996)undefined Nucl. Phys. B 473 469-undefined
[5]  
Smirnov FA(2021)undefined JHEP 10 062-undefined
[6]  
Zamolodchikov AB(1996)undefined Commun. Math. Phys. 177 381-undefined
[7]  
Delfino G(1997)undefined Nucl. Phys. B 489 487-undefined
[8]  
Mussardo G(2011)undefined Nucl. Phys. B 849 654-undefined
[9]  
Simonetti P(1998)undefined Nucl. Phys. B 516 652-undefined
[10]  
Camilo G(2012)undefined JETP Lett. 95 201-undefined