A detailed description of the binomial theorem and an application to permutation binomials over finite fields

被引:0
作者
Zhilin Zhang
Lang Tang
Ningjing Huang
机构
[1] South China Normal University,School of Mathematical Science
[2] Hunan First Normal University,Mathematics and Computational Science
[3] Liangtian Town Third Primary School,undefined
来源
Journal of Applied Mathematics and Computing | 2022年 / 68卷
关键词
Binomial theorem; Combinatorial identities; Permutation binomials; Finite fields; 05A05; 11T06; 05A19;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we present a detailed description of the binomial theorem and obtain some new classes of combinatorial identities. As an application, we discuss a class of permutation binomials over finite fields Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_q$$\end{document}, which is of the form xμ+ν+2xμ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x^{\mu +\nu }+2x^{\mu }$$\end{document}, where q≡1(mod3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q\equiv 1\pmod {3}$$\end{document} and (ν,q-1)=q-13\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\nu , q-1)=\frac{q-1}{3}$$\end{document}.
引用
收藏
页码:177 / 198
页数:21
相关论文
共 44 条
[41]   Full classification of permutation rational functions and complete rational functions of degree three over finite fields [J].
Andrea Ferraguti ;
Giacomo Micheli .
Designs, Codes and Cryptography, 2020, 88 :867-886
[42]   Computation of periods of product polynomials over finite fields and its application on convolution sequences [J].
Zhang, WG ;
Xiao, H ;
Xiao, GZ .
CHINESE JOURNAL OF ELECTRONICS, 2006, 15 (02) :293-296
[43]   q-Analogs Over Finite Fields: Definition, Algebraic Properties, and Application in Pseudo-Random Number Generators [J].
Souza, Carlos E. C. ;
Moreno, Davi ;
Figueiredo, Ravi B. D. ;
Chaves, Daniel P. B. ;
Pimentel, Cecilio .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2023, 70 (08) :3064-3068
[44]   Permutation polynomials of the form cx+Trql/q(xa)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$cx+\text {Tr}_{q^{l}/ q}(x^{a})$\end{document} and permutation trinomials over finite fields with even characteristic [J].
Kangquan Li ;
Longjiang Qu ;
Xi Chen ;
Chao Li .
Cryptography and Communications, 2018, 10 (3) :531-554