A detailed description of the binomial theorem and an application to permutation binomials over finite fields

被引:0
作者
Zhilin Zhang
Lang Tang
Ningjing Huang
机构
[1] South China Normal University,School of Mathematical Science
[2] Hunan First Normal University,Mathematics and Computational Science
[3] Liangtian Town Third Primary School,undefined
来源
Journal of Applied Mathematics and Computing | 2022年 / 68卷
关键词
Binomial theorem; Combinatorial identities; Permutation binomials; Finite fields; 05A05; 11T06; 05A19;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we present a detailed description of the binomial theorem and obtain some new classes of combinatorial identities. As an application, we discuss a class of permutation binomials over finite fields Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_q$$\end{document}, which is of the form xμ+ν+2xμ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x^{\mu +\nu }+2x^{\mu }$$\end{document}, where q≡1(mod3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q\equiv 1\pmod {3}$$\end{document} and (ν,q-1)=q-13\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\nu , q-1)=\frac{q-1}{3}$$\end{document}.
引用
收藏
页码:177 / 198
页数:21
相关论文
共 44 条
[31]   Jordan-Landau theorem for matrices over finite fields [J].
Cheong, Gilyoung ;
Lee, Jungin ;
Nam, Hayan ;
Yu, Myungjun .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2022, 655 :100-128
[32]   Compositional inverses of permutation polynomials of the form xrh(xs) over finite fields [J].
Li, Kangquan ;
Qu, Longjiang ;
Wang, Qiang .
CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2019, 11 (02) :279-298
[33]   Ambiguity, deficiency and differential spectrum of normalized permutation polynomials over finite fields [J].
Panario, Daniel ;
Santana, Daniel ;
Wang, Qiang .
FINITE FIELDS AND THEIR APPLICATIONS, 2017, 47 :330-350
[34]   Compositional inverses of permutation polynomials of the form xrh(xs) over finite fields [J].
Kangquan Li ;
Longjiang Qu ;
Qiang Wang .
Cryptography and Communications, 2019, 11 :279-298
[36]   Rational digit systems over finite fields and Christol's Theorem [J].
Loquias, Manuel Joseph C. ;
Mkaouar, Mohamed ;
Scheicher, Klaus ;
Thuswaldner, Joerg M. .
JOURNAL OF NUMBER THEORY, 2017, 171 :358-390
[37]   Permutation polynomials of the form cx + Tr ql/q (xa) and permutation trinomials over finite fields with even characteristic [J].
Li, Kangquan ;
Qu, Longjiang ;
Chen, Xi ;
Li, Chao .
CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2018, 10 (03) :531-554
[38]   Several classes of permutation trinomials from Niho exponents over finite fields of characteristic [J].
Liu, Qian ;
Sun, Yujuan .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2019, 18 (04)
[39]   Full classification of permutation rational functions and complete rational functions of degree three over finite fields [J].
Ferraguti, Andrea ;
Micheli, Giacomo .
DESIGNS CODES AND CRYPTOGRAPHY, 2020, 88 (05) :867-886
[40]   Davenport-Hasse's theorem for polynomial Gauss sums over finite fields [J].
Zheng, Zhiyong .
JOURNAL OF NUMBER THEORY, 2017, 180 :460-473